吃什么升血压最快| 绿色心情是什么意思| 病毒性感冒吃什么药效果好| 出生日期查五行缺什么| 下眼睑跳动是什么原因| 万宝龙皮带算什么档次| 解表是什么意思| er什么意思| 男士戴什么手串好| 辛辣指的是什么| 归脾丸的功效与作用治什么病| ab型和b型生的孩子是什么血型| 03年属什么生肖| 孩子晚上睡觉磨牙是什么原因| 饧是什么意思| 快递已揽件是什么意思| 炀是什么意思| 18k金和24k金有什么区别| 垂涎什么意思| 快闪是什么意思| 为什么有的人特别招蚊子| CAT是什么| 尿酸高吃什么中药能降下来| 禾字五行属什么| 脂肪肝用什么药| 最新奥特曼叫什么| 什么是癔症| 纸是用什么材料做的| 黄瓜什么时候种植| 维生素d补什么| 开心的反义词是什么| 梦见盖房子什么意思| 脚发烫是什么原因| 马子是什么意思| 黑乎乎的什么| 昵称什么意思| 女人细菌感染什么原因引起的| 什么的什么是什么的伞| 渺渺是什么意思| 旁听是什么意思| 泌尿感染吃什么药最好| 甲抗是什么原因引起的| 为什么会脱发| 吃什么水果减肥最快减肚子| 老是干咳嗽是什么原因| 还记得年少时的梦吗是什么歌| sch是什么意思| 功夫2什么时候上映| 炭疽病用什么药最好| 皮疹和湿疹有什么区别| 宫颈管少量积液是什么意思| 纤支镜检查是用来查什么的| 月经提前量少是什么原因| 为什么硬不起来| 家是什么| 迪奥是什么意思| 维生素b6治什么病| 沙拉酱可以做什么美食| 女性肝囊肿要注意什么| hcv是什么意思| 花斑癣用什么药膏好| 绅士什么意思| 哆啦a梦的寓意是什么| 脚底板疼是什么原因| 甲流乙流吃什么药| kitty什么意思| 散射光是什么意思| 双相情感障碍什么意思| 食古不化是什么意思| 三周年祭奠有什么讲究| 胃体隆起是什么意思| 血糖高初期有什么症状| 上元节是什么节日| 零申报是什么意思| 前方起飞是什么意思| 脸过敏要注意什么| 乳环是什么| 室性早搏是什么原因引起的| 无意识是什么意思| 儿童长倒刺缺什么营养| 微信什么时候开始的| 1960属什么生肖| 别字是什么意思| mc是什么| 健康四大基石是什么| 猫靠什么散热| 腰间盘突出用什么药好| 丁香茶有什么作用和功效| 喝酒眼睛红是什么原因| 小猪佩奇为什么这么火| 伤寒是什么意思| 什么叫慢阻肺| 脾胃不好吃什么药好| 萎靡是什么意思| 天伦之乐是什么意思| 拔完牙可以吃什么| 姨妈的老公叫什么| 吃什么能快速降血压| 什么颜色代表友谊| 安吉白茶属于什么茶| 梗犬是什么意思| 做梦钓到大鱼什么意思| 赤潮是什么意思| 秋葵什么季节吃| 诱发电位是检查什么病的| 嗜睡是什么原因| 什么样的水花| 龟头炎是什么症状| 祛湿是什么意思| 丸吞是什么意思| bpa是什么意思| 为什么吃火龙果会拉肚子| 五官立体是什么意思| 下午1点到3点是什么时辰| 尿细菌高是什么原因| 孩子第一次来月经要注意什么| 鸟屎掉脸上有什么预兆| neg是什么意思| 喝红枣水有什么好处和坏处| 十八岁属什么生肖| 黄色裤子配什么上衣| 肝肿瘤不能吃什么| 浆果是什么| 长期熬夜会有什么后果| 便秘喝什么药| pdw偏低是什么意思| 头晕冒冷汗是什么原因| 胳膊肘往外拐是什么意思| 专升本需要考什么| 8.9是什么星座| 一产二产三产分别包括什么| 什么什么不断| 人棉是什么面料| 梦见租房子住是什么意思| 浑身酸疼是什么原因| 交社保有什么用| hiv是什么病毒| 晚上喝蜂蜜水有什么好处和坏处| 3月28号是什么星座| 跳蛋什么意思| 缺锌吃什么食物| 总流鼻血是什么原因| loaf是什么意思| 真丝用什么洗| 肾结石吃什么药| 周杰伦什么星座| 综合是什么意思| 一什么桃子| 堃读什么| 世界上最大的岛是什么岛| 膝盖积液有什么症状| 女生是什么意思| 什么时候做四维| 水晶眼镜对眼睛有什么好处| 齿痕舌吃什么中成药| 阳虚火旺吃什么中成药| 为什么打哈欠| 辅酶q10什么时间吃最好| 师夷长技以制夷是什么意思| 珍惜眼前人是什么意思| 甲亢查什么| 什么的雨丝| 一去不返是什么生肖| 孩子咬手指甲是什么原因| 亲什么意思| 眼睑肿是什么原因| camus是什么酒| 杉菜是什么意思| 白带多用什么药效果好| 三十年婚姻是什么婚| 就藩什么意思| 什么体质人容易长脚气| pre是什么的缩写| 月经期间吃什么最好| 抉择是什么意思| 老年人脚肿挂什么科| 鹧鸪读音是什么| 县公安局局长是什么级别| 什么情况要做支气管镜| 喝太多水对身体有什么影响| 接风吃什么| 口腔溃疡吃什么药好得快| 益生元和益生菌有什么区别| 黄芪丹参山楂泡水有什么功效| 外感发热什么意思| 感冒喝什么粥| 耀字五行属什么| 肚子胀恶心想吐是什么原因| 水潴留是什么意思| 五月天主唱叫什么名字| 指甲白色是什么原因| 韩信属什么生肖| 孩子流黄鼻涕是什么原因| 高血压不能吃什么水果| 不到长城非好汉的下一句是什么| 食道好像有东西堵着是什么原因| 牛皮癣用什么药膏| 湿疹什么东西不能吃| 手指脱皮是什么原因造成的| 5月8日是什么星座| 双侧附睾头囊肿是什么意思| 激光脱毛和冰点脱毛有什么区别| 锌是什么颜色| 吃避孕药有什么危害| 羊奶和牛奶有什么区别| 河南有什么特色美食| 梦见自己给别人钱是什么意思| 女排精神是什么| 孩子睡觉出汗多是什么原因| 艾滋病通过什么传染| 87年的兔是什么命| 口爆是什么意思| 残疾证有什么补贴| 虱目鱼在大陆叫什么| 荨麻疹可以涂什么药膏| 乙肝235阳性是什么意思| 琉璃和玻璃有什么区别| 白介素2是治疗什么病的| 什么是菩提| 士加一笔是什么字| mido手表什么牌子| 胃出血吃什么药好| 预防中暑喝什么水| 是的是什么意思| 吃避孕药为什么要吃维生素c| 手抽筋是什么原因引起的| 小孩子腿疼是什么原因| 狗与什么属相相冲| 二甲双胍有什么副作用| 硬核是什么意思| 叶公好龙是什么生肖| gbm是什么意思| 为什么脸上长痣越来越多| 为什么会缺钙| 孕晚期脚肿是什么原因| 川字加一横是什么字| 六味地黄丸是治什么的| 迪丽热巴是什么族| 物以类聚什么意思| 血型阳性是什么意思| 不小心怀孕了吃什么药可以流掉| 水瓶座前面是什么星座| 口腔脱皮是什么原因引起的| 免漆板是什么板材| 胃反流吃什么药| 芋头是什么季节的| 东北方是什么方位| 中暑吃什么| 什么情况下需要割包皮| 医院什么时候下班| 皮疹是什么样子的| 谷草谷丙偏高是什么原因| 乳腺增生吃什么| 类风湿吃什么药有效| 利郎男装是什么档次的| 大宝是什么意思| ab是什么血型| 施华洛世奇算什么档次| 不感冒什么意思| 药食同源什么意思| 什么树没有叶| 三个贝念什么| 对头是什么意思| 年轻人为什么会低血压| 百度Jump to content

高价然并卵 小年轻们已经对真皮草不感冒了!

From Wikipedia, the free encyclopedia
百度 设备国产化率超过90%,显著提升了我国在磁铁、电源、探测器及电子学等领域相关产业技术水平和自主创新能力,使我国在强流质子加速器和中子散射领域实现了重大跨越,技术和综合性能进入国际同类装置先进行列。

In mathematical logic, an ω-consistent (or omega-consistent, also called numerically segregative)[1] theory is a theory (collection of sentences) that is not only (syntactically) consistent[2] (that is, does not prove a contradiction), but also avoids proving certain infinite combinations of sentences that are intuitively contradictory. The name is due to Kurt G?del, who introduced the concept in the course of proving the incompleteness theorem.[3]

Definition

[edit]

A theory T is said to interpret the language of arithmetic if there is a translation of formulas of arithmetic into the language of T so that T is able to prove the basic axioms of the natural numbers under this translation.

A T that interprets arithmetic is ω-inconsistent if, for some property P of natural numbers (defined by a formula in the language of T), T proves P(0), P(1), P(2), and so on (that is, for every standard natural number n, T proves that P(n) holds), but T also proves that there is some natural number n such that P(n) fails.[2] This may not generate a contradiction within T because T may not be able to prove for any specific value of n that P(n) fails, only that there is such an n. In particular, such n is necessarily a nonstandard integer in any model for T (Quine has thus called such theories "numerically insegregative").[4]

T is ω-consistent if it is not ω-inconsistent.

There is a weaker but closely related property of Σ1-soundness. A theory T is Σ1-sound (or 1-consistent, in another terminology)[5] if every Σ01-sentence[6] provable in T is true in the standard model of arithmetic N (i.e., the structure of the usual natural numbers with addition and multiplication). If T is strong enough to formalize a reasonable model of computation, Σ1-soundness is equivalent to demanding that whenever T proves that a Turing machine C halts, then C actually halts. Every ω-consistent theory is Σ1-sound, but not vice versa.

More generally, we can define an analogous concept for higher levels of the arithmetical hierarchy. If Γ is a set of arithmetical sentences (typically Σ0n for some n), a theory T is Γ-sound if every Γ-sentence provable in T is true in the standard model. When Γ is the set of all arithmetical formulas, Γ-soundness is called just (arithmetical) soundness. If the language of T consists only of the language of arithmetic (as opposed to, for example, set theory), then a sound system is one whose model can be thought of as the set ω, the usual set of mathematical natural numbers. The case of general T is different, see ω-logic below.

Σn-soundness has the following computational interpretation: if the theory proves that a program C using a Σn?1-oracle halts, then C actually halts.

Examples

[edit]

Consistent, ω-inconsistent theories

[edit]

Write PA for the theory Peano arithmetic, and Con(PA) for the statement of arithmetic that formalizes the claim "PA is consistent". Con(PA) could be of the form "No natural number n is the G?del number of a proof in PA that 0=1".[7] Now, the consistency of PA implies the consistency of PA + ?Con(PA). Indeed, if PA + ?Con(PA) was inconsistent, then PA alone would prove ?Con(PA)→0=1, and a reductio ad absurdum in PA would produce a proof of Con(PA). By G?del's second incompleteness theorem, PA would be inconsistent.

Therefore, assuming that PA is consistent, PA + ?Con(PA) is consistent too. However, it would not be ω-consistent. This is because, for any particular n, PA, and hence PA + ?Con(PA), proves that n is not the G?del number of a proof that 0=1. However, PA + ?Con(PA) proves that, for some natural number n, n is the G?del number of such a proof (this is just a direct restatement of the claim ?Con(PA)).

In this example, the axiom ?Con(PA) is Σ1, hence the system PA + ?Con(PA) is in fact Σ1-unsound, not just ω-inconsistent.

Arithmetically sound, ω-inconsistent theories

[edit]

Let T be PA together with the axioms c ≠ n for each natural number n, where c is a new constant added to the language. Then T is arithmetically sound (as any nonstandard model of PA can be expanded to a model of T), but ω-inconsistent (as it proves , and c ≠ n for every number n).

Σ1-sound ω-inconsistent theories using only the language of arithmetic can be constructed as follows. Let IΣn be the subtheory of PA with the induction schema restricted to Σn-formulas, for any n > 0. The theory IΣn + 1 is finitely axiomatizable, let thus A be its single axiom, and consider the theory T = IΣn + ?A. We can assume that A is an instance of the induction schema, which has the form

If we denote the formula

by P(n), then for every natural number n, the theory T (actually, even the pure predicate calculus) proves P(n). On the other hand, T proves the formula , because it is logically equivalent to the axiom ?A. Therefore, T is ω-inconsistent.

It is possible to show that T is Πn + 3-sound. In fact, it is Πn + 3-conservative over the (obviously sound) theory IΣn. The argument is more complicated (it relies on the provability of the Σn + 2-reflection principle for IΣn in IΣn + 1).

Arithmetically unsound, ω-consistent theories

[edit]

Let ω-Con(PA) be the arithmetical sentence formalizing the statement "PA is ω-consistent". Then the theory PA + ?ω-Con(PA) is unsound (Σ3-unsound, to be precise), but ω-consistent. The argument is similar to the first example: a suitable version of the HilbertBernaysL?b derivability conditions holds for the "provability predicate" ω-Prov(A) = ?ω-Con(PA + ?A), hence it satisfies an analogue of G?del's second incompleteness theorem.

ω-logic

[edit]

The concept of theories of arithmetic whose integers are the true mathematical integers is captured by ω-logic.[8] Let T be a theory in a countable language that includes a unary predicate symbol N intended to hold just of the natural numbers, as well as specified names 0, 1, 2, ..., one for each (standard) natural number (which may be separate constants, or constant terms such as 0, 1, 1+1, 1+1+1, ..., etc.). Note that T itself could be referring to more general objects, such as real numbers or sets; thus in a model of T the objects satisfying N(x) are those that T interprets as natural numbers, not all of which need be named by one of the specified names.

The system of ω-logic includes all axioms and rules of the usual first-order predicate logic, together with, for each T-formula P(x) with a specified free variable x, an infinitary ω-rule of the form:

From infer .

That is, if the theory asserts (i.e. proves) P(n) separately for each natural number n given by its specified name, then it also asserts P collectively for all natural numbers at once via the evident finite universally quantified counterpart of the infinitely many antecedents of the rule. For a theory of arithmetic, meaning one with intended domain the natural numbers such as Peano arithmetic, the predicate N is redundant and may be omitted from the language, with the consequent of the rule for each P simplifying to .

An ω-model of T is a model of T whose domain includes the natural numbers and whose specified names and symbol N are standardly interpreted, respectively as those numbers and the predicate having just those numbers as its domain (whence there are no nonstandard numbers). If N is absent from the language then what would have been the domain of N is required to be that of the model, i.e. the model contains only the natural numbers. (Other models of T may interpret these symbols nonstandardly; the domain of N need not even be countable, for example.) These requirements make the ω-rule sound in every ω-model. As a corollary to the omitting types theorem, the converse also holds: the theory T has an ω-model if and only if it is consistent in ω-logic.

There is a close connection of ω-logic to ω-consistency. A theory consistent in ω-logic is also ω-consistent (and arithmetically sound). The converse is false, as consistency in ω-logic is a much stronger notion than ω-consistency. However, the following characterization holds: a theory is ω-consistent if and only if its closure under unnested applications of the ω-rule is consistent.

Relation to other consistency principles

[edit]

If the theory T is recursively axiomatizable, ω-consistency has the following characterization, due to Craig Smoryński:[9]

T is ω-consistent if and only if is consistent.

Here, is the set of all Π02-sentences valid in the standard model of arithmetic, and is the uniform reflection principle for T, which consists of the axioms

for every formula with one free variable. In particular, a finitely axiomatizable theory T in the language of arithmetic is ω-consistent if and only if T + PA is -sound.

Notes

[edit]
  1. ^ W. V. O. Quine (1971), Set Theory and Its Logic.
  2. ^ a b S. C. Kleene, Introduction to Metamathematics (1971), p.207. Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics Vol. I, Wolters-Noordhoff, North-Holland 0-7204-2103-9, Elsevier 0-444-10088-1.
  3. ^ Smorynski, "The incompleteness theorems", Handbook of Mathematical Logic, 1977, p. 851.
  4. ^ Floyd, Putnam, A Note on Wittgenstein's "Notorious Paragraph" about the G?del Theorem (2000)
  5. ^ H. Friedman, "Adventures in G?del Incompleteness" (2023), p.14. Accessed 12 September 2023.
  6. ^ The definition of this symbolism can be found at arithmetical hierarchy.
  7. ^ This formulation uses 0=1 instead of a direct contradiction; that gives the same result, because PA certainly proves ?0=1, so if it proved 0=1 as well we would have a contradiction, and on the other hand, if PA proves a contradiction, then it proves anything, including 0=1.
  8. ^ J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977. ω-logic in Barwise is defined as a two-sorted first-order logic, with a fixed interpretation of the second sort as the natural numbers (§5.2, p.42); whereas this article discusses the single sorted internalization via a unary predicate N (also discussed in §5.1).
  9. ^ Smoryński, Craig (1985). Self-reference and modal logic. Berlin: Springer. ISBN 978-0-387-96209-2. Reviewed in Boolos, G.; Smorynski, C. (1988). "Self-Reference and Modal Logic". The Journal of Symbolic Logic. 53: 306. doi:10.2307/2274450. JSTOR 2274450.

Bibliography

[edit]
什么叫匝道 吃什么食物可以减肥 不敢造次是什么意思 93年属于什么生肖 石墨烯属于什么材料
蒲公英什么时候采最好 zeesea是什么牌子 梦见到处都是蛇预示着什么 疱疹性咽峡炎吃什么食物 头发爱出油是什么原因
泪腺堵塞有什么症状 生离死别是什么生肖 4月27号是什么星座 粉玫瑰适合送什么人 八大菜系之首是什么菜
过指什么生肖 牙疼能吃什么食物 夏天吃什么 乙肝e抗体高是什么意思 兰姓是什么民族
yearcon是什么牌子gangsutong.com 小儿麻痹什么症状hcv9jop5ns3r.cn 痔疮是什么样子的hcv8jop3ns1r.cn 骨折补钙吃什么钙片好hcv9jop7ns1r.cn 解脲支原体阳性吃什么药最好hcv9jop5ns0r.cn
34岁属什么的生肖hcv8jop5ns5r.cn 永五行属什么hcv9jop3ns2r.cn 红色爱心是什么牌子hcv9jop4ns8r.cn 人心果什么时候成熟hcv9jop8ns3r.cn 肝脏在什么位置hcv8jop9ns1r.cn
刺瘊子是什么原因造成的zsyouku.com 4月28号是什么星座hcv8jop5ns3r.cn 女孩子学什么专业比较好hcv9jop8ns3r.cn 什么东西能吃能喝又能坐hcv8jop2ns9r.cn 曹洪是曹操的什么人hcv9jop2ns6r.cn
衣原体感染用什么药hcv9jop0ns1r.cn 4月26是什么星座hcv9jop1ns0r.cn 肚子胀恶心想吐是什么原因hcv8jop4ns4r.cn 脂蛋白磷脂酶a2高说明什么fenrenren.com 银耳为什么助湿气hcv8jop2ns9r.cn
百度