ala是什么意思| 头晕用什么药好| 空调外机为什么会滴水| badus是什么牌子的手表| 倒走对身体有什么好处| 7.14什么星座| 长期胃胀是什么原因| 乳房胀痛什么原因| 胆囊大是什么原因| ercp是什么| 格桑花是什么意思| 失败是成功之母是什么意思| 猪沙肝是什么部位| 嬲是什么意思| 吉尼斯是什么意思| 鲻鱼是什么鱼| 左眼跳女人是什么预兆| 铜陵有什么好玩的地方| 偏头痛是什么| eo什么意思| 甲状腺三项检查什么| 梦见穿裤子是什么意思| 痘痘肌肤适合用什么牌子的护肤品| 1960年属鼠的是什么命| 七月是什么生肖| 乳腺钙化是什么意思啊| kangol是什么牌子| 畈是什么意思| 佛珠什么材质的最好| 善莫大焉是什么意思| 血糖和血脂有什么区别| 呵是什么意思| 上升星座是什么意思| 内膜厚吃什么药掉内膜| 软著有什么用| 一个口一个女念什么| 狐臭用什么药最好| 谈情说爱是什么意思| 血压高是什么原因引起的| 小便分叉是什么症状| 吃东西就打嗝是什么原因| 人参归脾丸适合什么人吃| 为什么要文化大革命| 正常人为什么传导阻滞| 什么东西放进去是硬的拿出来是软的| rr医学上什么意思| 红头文件是什么意思| 金牛女喜欢什么样的男生| 怀孕天数从什么时候算起| 贫血吃什么水果好| 食管裂孔疝是什么原因造成的| 液体面包是什么| 脾虚如何调理吃什么药| 打哈哈是什么意思| 铲垃圾的工具叫什么| 李商隐被称为什么| 冬虫夏草有什么好处| 人的价值是什么| 打嗝放屁多是什么原因| 宠物蛇吃什么| 口蜜腹剑是什么意思| 结肠憩室是什么意思| 检查前列腺需要做什么检查| 今天什么日| 鸭子炖汤和什么一起炖最有营养| 彩铃是什么意思| 佛道是什么意思| 做梦手机坏了什么预兆| 眼力见是什么意思| 神经纤维瘤挂什么科| o型阴性血是什么意思| 神经内科和神经外科有什么区别| 中国防御系统叫什么| 什么叫便溏| 尿结石挂什么科| 和包是什么| 学士学位证书有什么用| 猪猪侠叫什么| 茶叶有什么功效| 月经黑褐色是什么原因| 五月十四号是什么情人节| 女人银屑病一般都长什么地方| 狗跟什么生肖最配| 水煎服是什么意思| 检查肾功能挂什么科| 小妮子是什么意思| 做可乐鸡翅用什么可乐| 吃什么东西化痰| t1什么意思| 鼻屎多是什么原因| 低钾会出现什么症状| 做什么检查需要空腹| 全身无力是什么原因| 伊玛目是什么意思| 糯米粉是什么粉| 坐飞机要什么证件| 什么颜色加什么颜色等于黄色| 脸发黄是什么原因| 阴虱有什么症状| 阿胶糕适合什么人吃| 入睡难一般是什么原因造成的| 尧五行属什么| 苛捐杂税是什么生肖| 教唆什么意思| 老公不交工资意味什么| 初伏吃什么| 什么是gdp| 为什么腹水会很快死亡| 泛性恋什么意思| 兔死狐悲是什么生肖| 闭关什么意思| 当医生要什么学历| 狼来了的寓意是什么| 口苦吃什么中药| 泌尿科属于什么科| 下半夜咳嗽是什么原因| 芦笋是什么植物| 私募是什么| 梦见捡硬币是什么预兆| 男人交生育保险有什么用| 荨麻疹忌口忌什么食物| 腱鞘炎用什么药| 靳东妹妹叫什么名字| 孕妇吃海带有什么好处| 猎奇是什么意思| 为什么会得湿疹| 四月二十八什么星座| 老犯困是什么原因| 结核杆菌dna检测是检查什么| 西瓜和什么榨汁好喝| 梦见打群架是什么意思| 身份证后六位代表什么| 胃寒吃什么药最有效| ru是什么意思| 白带拉丝是什么原因| 淋巴滤泡增生用什么药能彻底治愈| 黄芪泡水喝有什么好处| 乾卦代表什么| 员外是什么生肖| 回奶吃什么药| 低压高有什么危险| 门头是什么意思| 美国为什么有两块土地| cyan是什么颜色| 萨满教供奉什么神| 神经损伤吃什么药最好| 驴友是什么意思| 1947年属什么| 甘草片不能和什么药一起吃| 胃窦肠化是什么意思| 胃疼吃什么好| 后背痒是什么病的前兆| 怀孕吃辣对胎儿有什么影响| 卡替治疗是什么意思| 抱怨是什么意思| 低血压去药店买什么药| 夜明砂是什么| 束在什么情况下读su| 脂肪肝什么东西不能吃| 肾外肾盂是什么意思| 痛风什么东西不能吃| 不什么其烦| 圆脸适合什么发型女| 宝宝咳嗽吃什么药好| pr医学上什么意思| 下面有异味是什么原因| 什么是cp| 低度鳞状上皮内病变是什么意思| 发狂是什么意思| 什么是中出| 荣辱与共是什么意思| 孕妇地中海贫血对胎儿有什么影响| 男性生殖器叫什么| 吃什么东西对肺好| 奶阵是什么意思| 快穿是什么意思| 身体安康什么意思| cd是什么元素| 什么茶可以减肥| 七月上旬是什么时候| N医学上是什么意思| 初中什么时候开学| 梦见杀狗是什么预兆| 王朔为什么不娶徐静蕾| 活菩萨是什么意思| 十八大什么时候召开的| 新生儿溶血是什么意思| 女性绝经期在什么年龄是正常的| 易拉罐是什么垃圾| 中秋吃什么| 髂胫束在什么位置| 额头出油多是什么原因| 补充微量元素吃什么| 泡打粉是什么东西| hpv检查挂什么科| 朝奉是什么意思| 佛是什么生肖| 梦到死去的亲人是什么意思| 聚乙二醇是什么| 医生为什么喜欢开地塞米松| 慢性荨麻疹是什么症状| 水溶性是什么意思| 凯莉包是什么牌子| 25羟基维生素d是什么| 湿气重去医院挂什么科| 什么是维生素| 没有舌苔是什么原因| 西瓜虫喜欢吃什么| 精索静脉曲张是什么| 专项变应原筛查是什么| 挂绿荔枝为什么那么贵| 家门不幸是什么意思| 一什么湖水| 理想血压是什么意思| 宗旨是什么意思| 什么是轻断食| 汪小菲什么星座| 颤栗是什么意思| 残疾证有什么用| 眼睛红肿是什么原因引起的| 吃海鲜不能吃什么水果| 头晕喝什么饮料| ami是什么牌子| 等是什么生肖| 店长的工作职责是什么| 肝郁血虚吃什么中成药| 咽痛吃什么药| 维生素C起什么作用| 1994属什么| 痔疮什么样子| 老人爱睡觉是什么原因| 胆红素偏高是什么原因| 牙龈肿痛发炎吃什么药| 裸车是什么意思| 上环要做什么检查| 咳嗽吃什么水果好| 年少轻狂是什么意思| 圆脸适合什么眉形| 四十岁月经量少是什么原因| 内科查什么| 喝什么茶降血压| 东北有什么好玩的景点| 右肋骨下方隐隐疼痛是什么原因| 双子女喜欢什么样的男生| 宝宝流鼻涕吃什么药| 搬新家送什么礼物好| 什么植物有毒| td代表什么意思| 经常口腔溃疡是什么原因| 腺样体挂什么科| 湿气到底是什么| 时柱金舆是什么意思| 做梦梦到和别人吵架是什么意思| 同房疼痛什么原因| 肝在什么位置图片| 心律不齐吃什么药效果好| 德国高速为什么不限速| 1893年属什么生肖| 胸痛是什么情况| 川崎病是什么| 膝盖骨质增生用什么药效果好| 疱疹什么症状| 什么牌子的空调好用又省电| 做梦梦到掉牙齿是什么意思| 百度Jump to content

From Wikipedia, the free encyclopedia
(Redirected from Completely normal space)
Separation axioms
in topological spaces
Kolmogorov classification
T0 (Kolmogorov)
T1 (Fréchet)
T2 (Hausdorff)
T2?(Urysohn)
completely T2 (completely Hausdorff)
T3 (regular Hausdorff)
T3?(Tychonoff)
T4 (normal Hausdorff)
T5 (completely normal
 Hausdorff)
T6 (perfectly normal
 Hausdorff)
百度 无论是您的好体验还是坏体验,都是我们需要的。

In topology and related branches of mathematics, a normal space is a topological space in which any two disjoint closed sets have disjoint open neighborhoods. Such spaces need not be Hausdorff in general. A normal Hausdorff space is called a T4 space. Strengthenings of these concepts are detailed in the article below and include completely normal spaces and perfectly normal spaces, and their Hausdorff variants: T5 spaces and T6 spaces. All these conditions are examples of separation axioms.

Definitions

[edit]

A topological space X is a normal space if, given any disjoint closed sets E and F, there are neighbourhoods U of E and V of F that are also disjoint. More intuitively, this condition says that E and F can be separated by neighbourhoods.

The closed sets E and F, here represented by closed disks on opposite sides of the picture, are separated by their respective neighbourhoods U and V, here represented by larger, but still disjoint, open disks.

A T4 space is a T1 space X that is normal; this is equivalent to X being normal and Hausdorff.

A completely normal space, or hereditarily normal space, is a topological space X such that every subspace of X is a normal space. It turns out that X is completely normal if and only if every two separated sets can be separated by neighbourhoods. Also, X is completely normal if and only if every open subset of X is normal with the subspace topology.

A T5 space, or completely T4 space, is a completely normal T1 space X, which implies that X is Hausdorff; equivalently, every subspace of X must be a T4 space.

A perfectly normal space is a topological space in which every two disjoint closed sets and can be precisely separated by a function, in the sense that there is a continuous function from to the interval such that and .[1] This is a stronger separation property than normality, as by Urysohn's lemma disjoint closed sets in a normal space can be separated by a function, in the sense of and , but not precisely separated in general. It turns out that X is perfectly normal if and only if X is normal and every closed set is a Gδ set. Equivalently, X is perfectly normal if and only if every closed set is the zero set of a continuous function. The equivalence between these three characterizations is called Vedenissoff's theorem.[2][3] Every perfectly normal space is completely normal, because perfect normality is a hereditary property.[4][5]

A T6 space, or perfectly T4 space, is a perfectly normal Hausdorff space.

Note that the terms "normal space" and "T4" and derived concepts occasionally have a different meaning. (Nonetheless, "T5" always means the same as "completely T4", whatever the meaning of T4 may be.) The definitions given here are the ones usually used today. For more on this issue, see History of the separation axioms.

Terms like "normal regular space" and "normal Hausdorff space" also turn up in the literature—they simply mean that the space both is normal and satisfies the other condition mentioned. In particular, a normal Hausdorff space is the same thing as a T4 space. Given the historical confusion of the meaning of the terms, verbal descriptions when applicable are helpful, that is, "normal Hausdorff" instead of "T4", or "completely normal Hausdorff" instead of "T5".

Fully normal spaces and fully T4 spaces are discussed elsewhere; they are related to paracompactness.

A locally normal space is a topological space where every point has an open neighbourhood that is normal. Every normal space is locally normal, but the converse is not true. A classical example of a completely regular locally normal space that is not normal is the Nemytskii plane.

Examples of normal spaces

[edit]

Most spaces encountered in mathematical analysis are normal Hausdorff spaces, or at least normal regular spaces:

Also, all fully normal spaces are normal (even if not regular). Sierpiński space is an example of a normal space that is not regular.

Examples of non-normal spaces

[edit]

An important example of a non-normal topology is given by the Zariski topology on an algebraic variety or on the spectrum of a ring, which is used in algebraic geometry.

A non-normal space of some relevance to analysis is the topological vector space of all functions from the real line R to itself, with the topology of pointwise convergence. More generally, a theorem of Arthur Harold Stone states that the product of uncountably many non-compact metric spaces is never normal.

Properties

[edit]

Every closed subset of a normal space is normal. The continuous and closed image of a normal space is normal.[6]

The main significance of normal spaces lies in the fact that they admit "enough" continuous real-valued functions, as expressed by the following theorems valid for any normal space X.

Urysohn's lemma: If A and B are two disjoint closed subsets of X, then there exists a continuous function f from X to the real line R such that f(x) = 0 for all x in A and f(x) = 1 for all x in B. In fact, we can take the values of f to be entirely within the unit interval [0,1]. In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also separated by a function.

More generally, the Tietze extension theorem: If A is a closed subset of X and f is a continuous function from A to R, then there exists a continuous function F: XR that extends f in the sense that F(x) = f(x) for all x in A.

The map has the lifting property with respect to a map from a certain finite topological space with five points (two open and three closed) to the space with one open and two closed points.[7]

If U is a locally finite open cover of a normal space X, then there is a partition of unity precisely subordinate to U. This shows the relationship of normal spaces to paracompactness.

In fact, any space that satisfies any one of these three conditions must be normal.

A product of normal spaces is not necessarily normal. This fact was first proved by Robert Sorgenfrey. An example of this phenomenon is the Sorgenfrey plane. In fact, since there exist spaces which are Dowker, a product of a normal space and [0, 1] need not to be normal. Also, a subset of a normal space need not be normal (i.e. not every normal Hausdorff space is a completely normal Hausdorff space), since every Tychonoff space is a subset of its Stone–?ech compactification (which is normal Hausdorff). A more explicit example is the Tychonoff plank. The only large class of product spaces of normal spaces known to be normal are the products of compact Hausdorff spaces, since both compactness (Tychonoff's theorem) and the T2 axiom are preserved under arbitrary products.[8]

Relationships to other separation axioms

[edit]

If a normal space is R0, then it is in fact completely regular. Thus, anything from "normal R0" to "normal completely regular" is the same as what we usually call normal regular. Taking Kolmogorov quotients, we see that all normal T1 spaces are Tychonoff. These are what we usually call normal Hausdorff spaces.

A topological space is said to be pseudonormal if given two disjoint closed sets in it, one of which is countable, there are disjoint open sets containing them. Every normal space is pseudonormal, but not vice versa.

Counterexamples to some variations on these statements can be found in the lists above. Specifically, Sierpiński space is normal but not regular, while the space of functions from R to itself is Tychonoff but not normal.

See also

[edit]

Citations

[edit]
  1. ^ Willard, Exercise 15C
  2. ^ Engelking, Theorem 1.5.19. This is stated under the assumption of a T1 space, but the proof does not make use of that assumption.
  3. ^ "Why are these two definitions of a perfectly normal space equivalent?".
  4. ^ Engelking, Theorem 2.1.6, p. 68
  5. ^ Munkres 2000, p. 213
  6. ^ Willard 1970, pp. 100–101.
  7. ^ "separation axioms in nLab". ncatlab.org. Retrieved 2025-08-07.
  8. ^ Willard 1970, Section 17.

References

[edit]
左胸隐痛什么原因 下腹部胀是什么原因 鹿下面一个几字读什么 七月十号是什么日子 做宫颈筛查能查出什么
喉炎吃什么药 舌头白是什么原因 羊悬筋是什么样子图片 身体出油多是什么原因 脖子长痘痘是因为什么原因
披什么散什么 石英岩玉是什么 鼻炎吃什么药 猫喜欢吃什么 梅花什么季节开
盐巴是什么 ot是什么意思 xn是什么意思 不易是什么意思 人流复查做什么检查
糖类抗原什么意思hcv7jop6ns8r.cn 尿盐结晶是什么意思hcv7jop5ns2r.cn 丝瓜烧什么好吃hcv8jop1ns9r.cn 乳房长斑点是什么原因hcv7jop5ns1r.cn 恶心干呕吃什么药hcv9jop4ns5r.cn
红领巾的含义是什么hcv9jop3ns7r.cn 肝衰竭是什么原因引起的hcv9jop5ns6r.cn 梦到男孩子是什么意思hcv9jop7ns5r.cn 78年属马的是什么命hcv7jop5ns3r.cn 喉咙发痒咳嗽吃什么药hcv7jop6ns0r.cn
有里面没有两横是什么字hcv9jop7ns2r.cn alp医学上是什么意思hcv7jop6ns7r.cn 小孩肚子痛挂什么科hcv9jop6ns7r.cn 什么祛斑产品效果好hcv8jop0ns2r.cn 脑白质病变是什么意思hcv8jop0ns2r.cn
海水倒灌是什么意思hcv8jop7ns8r.cn 癌前病变是什么意思hcv8jop1ns1r.cn 窦道是什么意思bysq.com 外阴炎吃什么药hcv8jop4ns4r.cn 什么是切片hcv9jop2ns6r.cn
百度