高血压是什么症状| 边缘视力是什么意思| 农历2月12日是什么星座| 清关是什么意思| 口红什么牌子最好| cba什么意思| 螃蟹是什么季节吃的| bp是什么意思医学上面| 做hpv检查前要注意什么| 为什么眼睛老是痒| 从从容容的意思是什么| 职业年金是什么| 肺结节看什么科| 肝掌是什么症状| 手的皮肤黄是什么原因| 早孕反应最早什么时候出现| hpv53阳性是什么意思| 人为什么要拉屎| 6月13号是什么星座| 为什么会得血管瘤| 玉露茶属于什么茶| 42是什么意思| 聚乙二醇是什么| 拔牙之后吃什么消炎药| 妙三多预防什么| 92年属猴的是什么命| 天台是什么意思| 骨质增生吃什么药效果好| 01年属什么生肖| 脚癣用什么药最好| 眉毛上长痣代表什么| 胰岛素偏低是什么原因| 阴道口疼是什么原因| 既寿永昌什么意思| 排恶露吃什么药| 科颜氏属于什么档次| 邕是什么意思| 什么是政策| 肚脐眼下面痛什么原因| 梦见自己大肚子怀孕是什么意思| 左舌根疼痛是什么情况| 什么东西有助于睡眠| 什么时候开始胎教| 静脉血是什么颜色| 反手引体向上练什么肌肉| 虾不能和什么一起吃| 特需号是什么意思| wlp是什么意思| 感冒发烧不能吃什么食物| 海绵是什么材料做的| 右肺疼是什么原因| 看头发挂什么科| tct是什么意思| 顶礼是什么意思| 进入icu病房意味着什么| 清热解毒煲什么汤最好| 心电图逆钟向转位是什么意思| 子宫肌瘤变性是什么意思| 突然头疼是什么原因| 双肺上叶肺大泡是什么意思| 丝状疣用什么药膏| 梦见自己尿血是什么意思| 小孩咳嗽不能吃什么食物| 什么是象限| 遁形是什么意思| 坚果补充什么营养成分| 月子餐吃什么| 白蛋白偏低是什么意思| 英气是什么意思| 为什么会得高血压| 彻底是什么意思| 8月8日是什么星座| 做梦梦见鱼是什么意思| 小儿惊风是什么症状| 睾丸发炎吃什么药| 曲马多是什么| ca199是什么检查项目| 合肥原名叫什么名字| 隐翅虫是什么样子| 吐痰带血是什么原因| 人体最大的免疫器官是什么| 葛根长什么样子图片| 耳朵不舒服是什么原因| 茭白是什么植物| jc是什么牌子| 吃什么可以补胶原蛋白| 甲基蓝治疗什么鱼病| 投桃报李是什么生肖| 特种兵是干什么的| 老年痴呆症又叫什么| 小儿急性喉炎吃什么药| 老年人便秘吃什么好| 勇者胜的上半句是什么| 脖子粗大是什么病的症状| 儿童枕头用什么枕芯好| 醋纤是什么面料| 肺部感染吃什么药| 糜烂性胃炎可以吃什么蔬菜| 卵巢囊性占位是什么意思| 高丽棒子是什么意思| 什么东西含铅量高| 肌肤之钥是什么档次| 怕热爱出汗是什么原因| 中央电视台台长是什么级别| 什么动作可以提高性功能| 双相情感障碍什么意思| 端字五行属什么| 红颜知己什么意思| 2012属什么生肖| 水杨酸有什么作用| 去医院看脚挂什么科| 什么叫红颜知己| 九孔藕和七孔藕有什么区别| 缪在姓氏中读什么| 微信为什么发不了视频| 普洱茶适合什么季节喝| 颈椎轻度退行性变是什么意思| 肠瘘是什么意思| 牙疼吃什么好| 弱视什么意思| 姑息治疗什么意思| 小孩子晚上睡觉磨牙是什么原因| 不是你撞的为什么要扶| 引火上身是什么意思| 翡翠属于什么玉| 肝火旺吃什么食物好| 心形脸适合什么发型| 梦见女儿哭意味着什么| 淋巴滤泡增生是什么意思| 马齿苋有什么作用| 孕妇刚生完孩子吃什么好| 燕条和燕盏有什么区别| 为什么老打哈欠| 白细胞wbc偏高是什么意思| 什么呀什么| 纠察是什么意思| 挂靠是什么意思| 爱琴海在什么地方| 游车河什么意思| 唐筛临界风险是什么意思| 刺五加配什么药治失眠| pm是什么| 代表友谊的花是什么花| 88是什么意思| 打水光针有什么副作用| 什么水果含糖低| 刻板是什么意思| 梦见给别人剪头发是什么意思| 孩子感冒发烧吃什么药| 小三阳是什么| 供给侧改革什么意思| 豆浆喝多了有什么副作用| 右手小指戴戒指什么意思| ca199偏高是什么原因| 双肺多发结节是什么意思| au是什么货币| 葡萄胎有什么症状反应| 脚围指的是什么| 磁共振检查什么| 乌龟浮水是什么原因| 杀生电影讲的什么意思| 高血糖吃什么食物| 情愫是什么意思| 再生纤维素纤维是什么| 牙疼吃什么食物| 1973年是什么命| 怀孕该吃什么补充营养| 人死了是什么感觉| 五心烦热失眠手脚心发热吃什么药| 属兔是什么命| 黑蝴蝶代表什么| 非常的近义词是什么| 养老保险什么时候开始交| 为什么一来月经就头疼| 得罪是什么意思| 乳房旁边疼是什么原因| 痔疮是什么样子| 猫的胡子有什么作用| 男人胡子长得快是什么原因| 浮水是什么意思| 针灸的原理是什么| 无能为力是什么意思| 什么是特应性皮炎| 肚子胀挂什么科| 迎风流泪用什么眼药水| 爱而不得是什么意思| 吃什么降血压效果最好| 吩咐是什么意思| 阴茎越来越小是什么原因| 内膜b型是什么意思啊| 保守治疗是什么意思| 痛风什么引起的原因有哪些| 走投无路是什么意思| 老婆子是什么意思| 什么是偶数| 吃什么养肝护肝效果最好| 吴佳尼为什么嫁马景涛| 为什么鼻毛会变白| 肝功十二项包括什么| 梦见小孩是什么意思| 什么的去路| 总梦到一个人说明什么| 哮喘什么症状| 骨折什么症状| 预后是什么意思| 12月出生是什么星座| 升读什么字| 小孩嗓子疼吃什么药| 2001年属什么生肖| 扁平疣长什么样| 月经第二天属于什么期| 菊花和枸杞泡水喝有什么功效| 百鸟归巢什么意思| 有氧运动是什么| 眼睛发胀是什么原因| 毕业送什么礼物好| 查肾挂什么科| 乳房硬块疼是什么原因| 耳石症是什么原因引起的| 过的第五笔是什么| 霸气是什么意思| 二尾子什么意思| 农历5月25日是什么星座| 宫内早孕什么意思| 尿肌酐高是什么原因| 琅玕是什么意思| 生姜和红枣煮水喝有什么作用| 西方属于五行属什么| 梦见烧纸钱是什么意思| cn是什么意思二次元| 舌头有点麻是什么病的前兆| 拉不出屎吃什么药| 阑尾炎吃什么| 控制线是什么意思| 打脸是什么意思| 黑头发有什么好处脑筋急转弯| 靶向治疗是什么| 天使长什么样| 草字头加青读什么| 什么东西快速补血| 比热容是什么| 鼻窦炎吃什么药好| 人为什么打嗝| 高血压喝什么茶好| 犯困是什么原因| d什么意思| 什么是激光| 总是心慌是什么原因| 词牌名是什么意思| 肛门痒是什么原因男性| 雨中漫步是什么意思| 面部填充用什么填充效果好| 小孩血糖高是什么原因引起的| 宋小宝得了什么病| 宝宝打嗝是什么原因| 午餐肉是什么肉做的| 有妇之夫是什么意思| 60岁男人喜欢什么样的女人| 金兰之交是什么意思| 生意兴隆是什么意思| 80年出生属什么生肖| 吃什么东西最营养| 8月19号是什么星座| 南宁有什么好玩的地方| 百度Jump to content

山西吕梁:擂响春季造林绿化战鼓

From Wikipedia, the free encyclopedia
百度 (记者海花杨光郑栋李艳万君)

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting a star is the projection of a geodesic of the curved four-dimensional (4-D) spacetime geometry around the star onto three-dimensional (3-D) space.

Mathematical expression

[edit]

The full geodesic equation is where s is a scalar parameter of motion (e.g. the proper time), and are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) symmetric in the two lower indices. Greek indices may take the values: 0, 1, 2, 3 and the summation convention is used for repeated indices and . The quantity on the left-hand-side of this equation is the acceleration of a particle, so this equation is analogous to Newton's laws of motion, which likewise provide formulae for the acceleration of a particle. The Christoffel symbols are functions of the four spacetime coordinates and so are independent of the velocity or acceleration or other characteristics of a test particle whose motion is described by the geodesic equation.

Equivalent mathematical expression using coordinate time as parameter

[edit]

So far the geodesic equation of motion has been written in terms of a scalar parameter s. It can alternatively be written in terms of the time coordinate, (here we have used the triple bar to signify a definition). The geodesic equation of motion then becomes:

This formulation of the geodesic equation of motion can be useful for computer calculations and to compare General Relativity with Newtonian Gravity.[1] It is straightforward to derive this form of the geodesic equation of motion from the form which uses proper time as a parameter using the chain rule. Notice that both sides of this last equation vanish when the mu index is set to zero. If the particle's velocity is small enough, then the geodesic equation reduces to this:

Here the Latin index n takes the values [1,2,3]. This equation simply means that all test particles at a particular place and time will have the same acceleration, which is a well-known feature of Newtonian gravity. For example, everything floating around in the International Space Station will undergo roughly the same acceleration due to gravity.

Derivation directly from the equivalence principle

[edit]

Physicist Steven Weinberg has presented a derivation of the geodesic equation of motion directly from the equivalence principle.[2] The first step in such a derivation is to suppose that a free falling particle does not accelerate in the neighborhood of a point-event with respect to a freely falling coordinate system (). Setting , we have the following equation that is locally applicable in free fall: The next step is to employ the multi-dimensional chain rule. We have: Differentiating once more with respect to the time, we have: We have already said that the left-hand-side of this last equation must vanish because of the Equivalence Principle. Therefore: Multiply both sides of this last equation by the following quantity: Consequently, we have this:

Weinberg defines the affine connection as follows:[3] which leads to this formula:

Notice that, if we had used the proper time “s” as the parameter of motion, instead of using the locally inertial time coordinate “T”, then our derivation of the geodesic equation of motion would be complete. In any event, let us continue by applying the one-dimensional chain rule:

As before, we can set . Then the first derivative of x0 with respect to t is one and the second derivative is zero. Replacing λ with zero gives:

Subtracting d xλ / d t times this from the previous equation gives: which is a form of the geodesic equation of motion (using the coordinate time as parameter).

The geodesic equation of motion can alternatively be derived using the concept of parallel transport.[4]

Deriving the geodesic equation via an action

[edit]

We can (and this is the most common technique) derive the geodesic equation via the action principle. Consider the case of trying to find a geodesic between two timelike-separated events.

Let the action be where is the line element. There is a negative sign inside the square root because the curve must be timelike. To get the geodesic equation we must vary this action. To do this let us parameterize this action with respect to a parameter . Doing this we get:

We can now go ahead and vary this action with respect to the curve . By the principle of least action we get:

Using the product rule we get: where

Integrating by-parts the last term and dropping the total derivative (which equals to zero at the boundaries) we get that:

Simplifying a bit we see that: so, multiplying this equation by we get:

So by Hamilton's principle we find that the Euler–Lagrange equation is

Multiplying by the inverse metric tensor we get that

Thus we get the geodesic equation: with the Christoffel symbol defined in terms of the metric tensor as

(Note: Similar derivations, with minor amendments, can be used to produce analogous results for geodesics between light-like[citation needed] or space-like separated pairs of points.)

Equation of motion may follow from the field equations for empty space

[edit]

Albert Einstein believed that the geodesic equation of motion can be derived from the field equations for empty space, i.e. from the fact that the Ricci curvature vanishes. He wrote:[5]

It has been shown that this law of motion — generalized to the case of arbitrarily large gravitating masses — can be derived from the field equations of empty space alone. According to this derivation the law of motion is implied by the condition that the field be singular nowhere outside its generating mass points.

and [6]

One of the imperfections of the original relativistic theory of gravitation was that as a field theory it was not complete; it introduced the independent postulate that the law of motion of a particle is given by the equation of the geodesic.

A complete field theory knows only fields and not the concepts of particle and motion. For these must not exist independently from the field but are to be treated as part of it.

On the basis of the description of a particle without singularity, one has the possibility of a logically more satisfactory treatment of the combined problem: The problem of the field and that of the motion coincide.

Both physicists and philosophers have often repeated the assertion that the geodesic equation can be obtained from the field equations to describe the motion of a gravitational singularity, but this claim remains disputed.[7] According to David Malament, “Though the geodesic principle can be recovered as theorem in general relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. Other assumptions are needed to derive the theorems in question.”[8] Less controversial is the notion that the field equations determine the motion of a fluid or dust, as distinguished from the motion of a point-singularity.[9]

Extension to the case of a charged particle

[edit]

In deriving the geodesic equation from the equivalence principle, it was assumed that particles in a local inertial coordinate system are not accelerating. However, in real life, the particles may be charged, and therefore may be accelerating locally in accordance with the Lorentz force. That is: with

The Minkowski tensor is given by:

These last three equations can be used as the starting point for the derivation of an equation of motion in General Relativity, instead of assuming that acceleration is zero in free fall.[2] Because the Minkowski tensor is involved here, it becomes necessary to introduce something called the metric tensor in General Relativity. The metric tensor g is symmetric, and locally reduces to the Minkowski tensor in free fall. The resulting equation of motion is as follows:[10] with

This last equation signifies that the particle is moving along a timelike geodesic; massless particles like the photon instead follow null geodesics (replace ?1 with zero on the right-hand side of the last equation). It is important that the last two equations are consistent with each other, when the latter is differentiated with respect to proper time, and the following formula for the Christoffel symbols ensures that consistency: This last equation does not involve the electromagnetic fields, and it is applicable even in the limit as the electromagnetic fields vanish. The letter g with superscripts refers to the inverse of the metric tensor. In General Relativity, indices of tensors are lowered and raised by contraction with the metric tensor or its inverse, respectively.

Geodesics as curves of stationary interval

[edit]

A geodesic between two events can also be described as the curve joining those two events which has a stationary interval (4-dimensional "length"). Stationary here is used in the sense in which that term is used in the calculus of variations, namely, that the interval along the curve varies minimally among curves that are nearby to the geodesic.

In Minkowski space there is only one geodesic that connects any given pair of events, and for a time-like geodesic, this is the curve with the longest proper time between the two events. In curved spacetime, it is possible for a pair of widely separated events to have more than one time-like geodesic between them. In such instances, the proper times along several geodesics will not in general be the same. For some geodesics in such instances, it is possible for a curve that connects the two events and is nearby to the geodesic to have either a longer or a shorter proper time than the geodesic.[11]

For a space-like geodesic through two events, there are always nearby curves which go through the two events that have either a longer or a shorter proper length than the geodesic, even in Minkowski space. In Minkowski space, the geodesic will be a straight line. Any curve that differs from the geodesic purely spatially (i.e. does not change the time coordinate) in any inertial frame of reference will have a longer proper length than the geodesic, but a curve that differs from the geodesic purely temporally (i.e. does not change the space coordinates) in such a frame of reference will have a shorter proper length.

The interval of a curve in spacetime is

Then, the Euler–Lagrange equation, becomes, after some calculation, where

Proof

The goal being to find a curve for which the value of is stationary, where such goal can be accomplished by calculating the Euler–Lagrange equation for f, which is

Substituting the expression of f into the Euler–Lagrange equation (which makes the value of the integral l stationary), gives

Now calculate the derivatives:

This is just one step away from the geodesic equation.

If the parameter s is chosen to be affine, then the right side of the above equation vanishes (because is constant). Finally, we have the geodesic equation

Derivation using autoparallel transport

[edit]

The geodesic equation can be alternatively derived from the autoparallel transport of curves. The derivation is based on the lectures given by Frederic P. Schuller at the We-Heraeus International Winter School on Gravity & Light.

Let be a smooth manifold with connection and be a curve on the manifold. The curve is said to be autoparallely transported if and only if .

In order to derive the geodesic equation, we have to choose a chart : Using the linearity and the Leibniz rule:

Using how the connection acts on functions () and expanding the second term with the help of the connection coefficient functions:

The first term can be simplified to . Renaming the dummy indices:

We finally arrive to the geodesic equation:

See also

[edit]

Bibliography

[edit]
  • Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (1972) John Wiley & Sons, New York ISBN 0-471-92567-5. See chapter 3.
  • Lev D. Landau and Evgenii M. Lifschitz, The Classical Theory of Fields, (1973) Pergammon Press, Oxford ISBN 0-08-018176-7 See section 87.
  • Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, Gravitation, (1970) W.H. Freeman, New York; ISBN 0-7167-0344-0.
  • Bernard F. Schutz, A first course in general relativity, (1985; 2002) Cambridge University Press: Cambridge, UK; ISBN 0-521-27703-5. See chapter 6.
  • Robert M. Wald, General Relativity, (1984) The University of Chicago Press, Chicago. See Section 3.3.

References

[edit]
  1. ^ Will, Clifford. Theory and Experiment in Gravitational Physics, p. 143 (Cambridge University Press 1993).
  2. ^ a b Weinberg, Steven. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley 1972).
  3. ^ Weinberg, Steven. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, p. 71, equation 3.2.4 (Wiley 1972).
  4. ^ Plebański, Jerzy and Krasiński, Andrzej. An Introduction to General Relativity and Cosmology, p. 34 (Cambridge University Press, 2006).
  5. ^ Einstein, Albert. The Meaning of Relativity, p. 113 (Routledge 2003).
  6. ^ Einstein, A.; Rosen, N. (1 July 1935). "The Particle Problem in the General Theory of Relativity". Physical Review. 48 (1): 76. Bibcode:1935PhRv...48...73E. doi:10.1103/PhysRev.48.73. and ER - Einstein Rosen paper ER=EPR
  7. ^ Tamir, M. "Proving the principle: Taking geodesic dynamics too seriously in Einstein’s theory", Studies In History and Philosophy of Modern Physics 43(2), 137–154 (2012).
  8. ^ Malament, David. “A Remark About the ‘Geodesic Principle’ in General Relativity” in Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos, pp. 245-252 (Springer 2012).
  9. ^ Plebański, Jerzy and Krasiński, Andrzej. An Introduction to General Relativity and Cosmology, p. 143 (Cambridge University Press, 2006).
  10. ^ Wald, R.M. (1984). General Relativity. Eq. 4.3.2: University of Chicago Press. ISBN 978-0-226-87033-5.{{cite book}}: CS1 maint: location (link)
  11. ^ Charles W. Misner; Kip Thorne; John Archibald Wheeler (1973). Gravitation. W. H. Freeman. pp. 316, 318–319. ISBN 0-7167-0344-0.
镜子是用什么做的 就诊卡是什么 什么水果含维生素b 九牛一毛指什么生肖 为什么不建议打水光针
尿酸高什么原因 记忆力减退吃什么药效果好 种牙是什么意思 半边脸疼是什么原因 金晨为什么叫大喜
脂肪肝是什么引起的 蚊子喜欢什么血型 为什么屁多是什么原因 分辨率dpi是什么意思 宫缩什么感觉
上海有什么好玩的地方 前列腺增生吃什么药最好 湿疹什么样 阴毛长虱子用什么药 医保卡是什么
autumn什么意思shenchushe.com 白色虫子是什么虫图片hcv7jop5ns3r.cn 7月28日什么星座aiwuzhiyu.com 臭屁是什么意思hcv9jop2ns3r.cn 23号来月经什么时候是排卵期mmeoe.com
龙生九子都叫什么名字hcv9jop1ns6r.cn 手脚脱皮是什么原因导致的hcv8jop8ns8r.cn 子宫粘连有什么症状hcv8jop7ns1r.cn 尿频尿急尿不尽吃什么药最快见效0297y7.com 知见是什么意思aiwuzhiyu.com
脚气是什么原因引起的hcv9jop7ns4r.cn 公报私仇是什么生肖hcv8jop4ns4r.cn 胃癌早期有什么症状hcv7jop7ns0r.cn 什么是二代身份证hcv9jop4ns5r.cn 步步生花是什么意思hcv9jop5ns4r.cn
四川有什么烟hcv8jop5ns2r.cn 公鸡蛋是什么hcv9jop1ns5r.cn 受虐倾向是什么意思hcv8jop0ns3r.cn 子宫内膜异位症有什么症状表现hcv8jop8ns9r.cn 玛卡和什么搭配壮阳效果最佳hcv7jop7ns0r.cn
百度