盐酸舍曲林片治疗什么程度的抑郁| 过敏性鼻炎吃什么药好的快| 敏感肌是什么意思| 没睡好头疼是什么原因| 为什么腹水会很快死亡| 珠胎暗结是什么意思| 如饥似渴是什么意思| 就不告诉你就不告诉你是什么儿歌| 空谷幽兰下一句是什么| 什么地方| 神志不清是什么意思| 二氧化硅是什么东西| 大脑供血不足是什么原因引起的| 车顶放饮料什么意思| 人见人爱是什么意思| 孕妇吃山竹对胎儿有什么好处| 男士睾丸疼是什么原因| 手指甲发白是什么原因| 骨质疏松有什么症状| 什么是前列腺| 米是什么结构| 白菜发苦是什么原因| 徐娘半老是什么意思| marni是什么品牌| dha是什么意思| 怀孕是什么脉象| 指甲月牙代表什么| 血压不稳定是什么原因| 育婴师是干什么的| 吃驼奶粉有什么好处| 百依百顺是什么生肖| 甲状腺应该挂什么科| 低血压头晕吃什么药| em是什么意思| 四季春是什么茶| 痔疮手术后吃什么| 坐围是什么| 圣经是什么| 强迫症有什么症状| 亚麻是什么面料| 下午14点是什么时辰| 肺ca是什么意思| 撩是什么意思| 七夕什么时候| 脑梗应该挂什么科| 小姨是什么| 胆囊息肉是什么原因造成的| 十年粤语版叫什么名字| 时光荏苒的意思是什么| 吃什么水果退烧| 去医院打耳洞挂什么科| 1月份是什么星座| 脚踝肿是什么病| 今期难过美人关是什么生肖| 嘴角长痘痘是什么原因| 马云父母是做什么的| 2048年是什么年| 什么的梦| 腋下皮肤发黑是什么原因引起的| 性生活后尿路感染是什么原因| 脊柱侧弯有什么危害| 8月一日是什么节日| 副厅级是什么级别| 口腔溃疡挂什么科室| 指甲变黑是什么原因| 鼻息肉长什么样子图片| 世界上最贵的烟是什么烟| 1993年出生属什么生肖| 米饭配什么菜好吃| 腰椎间盘突出吃什么药好| 肝内钙化灶什么意思| 扒皮是什么意思| 腹肌不对称是什么原因| hoka是什么牌子| 宫颈病变是什么| 头晕头重昏昏沉沉是什么原因| 各位同仁用在什么场合| 桓是什么意思| 白皮鸡蛋是什么鸡下的| 无印良品属于什么档次| 玫瑰糠疹吃什么药最有效| 怀孕血糖高有什么症状| 他不懂你的心假装冷静是什么歌| 甲状腺是什么功能| 双子女喜欢什么样的男生| 鸡心为什么不建议吃| 杨梅是什么季节的水果| 吃什么蔬菜能降血脂| meme什么意思| 为什么会得甲沟炎| 曹操原名叫什么| 齁是什么意思| 什么是收缩压和舒张压| 二郎神是什么动物| 什么叫闭经| 青核桃皮的功效与作用是什么| 拔了牙可以吃什么| 辟谷是什么| 没意思是什么意思| 什么溪流| salomon是什么牌子| 盆腔积液是什么意思| 吞咽困难是什么感觉| 心慌是什么原因引起的| 总打喷嚏是什么原因| 桑葚酒有什么功效| 什么室什么空| 大便量少是什么原因| 睾丸突然疼痛什么原因| 过敏用什么药膏| 做梦梦见被蛇咬是什么意思| mup是什么意思| 怀孕哭对宝宝有什么影响| 四肢麻木是什么原因引起的| 奔富红酒属于什么档次| 什么人生病不看医生| 碘酒和碘伏有什么区别| 下巴起痘痘是什么原因| 西游记是什么生肖| hm是什么牌子的衣服| 见风使舵是什么生肖| 没有美瞳护理液用什么代替| 超敏c反应蛋白偏高说明什么| 青霉素主治什么病| 什么蛇没有毒| 风寒吃什么药| 曲率是什么意思| 有腿毛的男人说明什么| 耳朵背后有痣代表什么| 1985年属牛的是什么命| 摩登女郎是什么意思| 小便带血什么原因| 包茎不割会有什么影响| 鸡蛋和什么不能一起吃吗| 有伤口吃什么消炎药| 生菜什么时候种| dunhill是什么品牌| 手指关节疼是什么原因| 常务副省长是什么级别| 梦见自己怀孕生孩子是什么意思| 牙疼脸肿了吃什么药| 什么是瞬时速度| 益生菌什么时间段吃效果好| 6月12日是什么星座| 文胸36码是什么尺寸| 步兵是什么意思| 右侧胸口疼是什么原因| 尿味重是什么原因| 花是什么意思| 南瓜和什么不能一起吃| 口干舌燥口苦吃什么药| ct腹部平扫能检查什么| 磨牙是缺什么| 什么食物降血压| 属马的生什么属相的宝宝好| 嗓子痒控制不住咳嗽是什么原因| 昕五行属什么| trab是甲状腺什么指标| 1月25日什么星座| 腿酸是什么原因引起的| 冰箱里有什么细菌| 才高八斗什么意思| 2009年是什么生肖年| 杏色配什么颜色最洋气| 什么驴技穷成语| gy是什么意思| 做梦房子倒塌什么预兆| 医疗保险是什么| 炙子是什么意思| 自诩是什么意思| 代表友谊的花是什么花| 伤寒现在叫什么病| 1992年属什么| 中国古代四大发明是什么| 天丝是什么材料| 三世诸佛是什么意思| 做胃镜挂什么科| 乳果糖什么时候吃效果更佳| 阑尾切除后有什么影响和后遗症| 嗓子痒咳嗽吃什么药| 1月20号是什么星座| 海柳什么颜色最贵的| 阳虚水泛是什么症状| 肾精亏虚吃什么中成药| 考法医需要什么条件| 118什么意思| 什么的梅花| 芥子是什么意思| 肝火胃火旺吃什么药| 一月三日是什么星座| 11月10号是什么星座| 黄五行属性是什么| 一字之师是什么意思| 尿酸高吃什么药| 骨折不能吃什么东西| 尿尿疼是什么原因| 足交什么感觉| 力不从心什么意思| 气短气喘吃什么药| 右上腹是什么器官| 拍身份证照片穿什么颜色衣服好看| 钾高吃什么可以降下来| 有两把刷子是什么意思| 淋巴结回声是什么意思| 附件炎有什么症状| 济南有什么特产| 耳钉什么材质的好| 天天吹空调有什么危害| ssa抗体阳性说明什么| 胸闷心慌是什么病| ect是什么| 1972年属什么| 血热吃什么药| 肠胃炎引起的发烧吃什么药| 当演员需要什么条件| 什么是热病| 吃芒果过敏是什么症状| 养狗需要注意什么| 干眼症吃什么药好| 一什么太阳| 臭屁是什么意思| 青少年梦遗有什么危害| 谷子是什么意思| 东边日出西边雨是什么生肖| 什么是什么意思| 6月13日什么星座| 黑桃a是什么酒| 男性生殖系统感染吃什么药| 螳螂吃什么东西| 血脂厚有什么症状| 66年属什么| 火腿炒什么菜好吃| 龙和什么生肖相冲| 查钙含量做什么检查| 胃穿孔是什么原因引起的| 菀字五行属什么| 女性内科检查什么| 氨纶是什么面料| 申遗是什么意思| 身上长小红痣是什么原因| 发烧42度是什么概念| 嫡长子是什么意思| 武则天叫什么名字| 什么是规培| 盗汗是什么原因| 耵聍栓塞是什么意思| 低压高吃什么| 什么水果含叶酸最多| 柳絮是什么| 床虱咬了要擦什么药膏| 青少年嗜睡是什么原因| 腰椎疼痛吃什么药| 脚长水泡是什么原因| 狗有眼屎是什么原因| 挂号特需是什么意思| 淋球菌是什么病| 阴谋是什么意思| 小孩口臭是什么原因| 手指上长毛是什么原因| 野生葛根粉有什么功效| 刺猬的刺有什么作用| 姨妈安全期是什么时候| 会车是什么意思| 结膜充血用什么眼药水| 百度Jump to content

一个普通女孩的新婚 伴娘竟然Taylor Swift?!

From Wikipedia, the free encyclopedia
百度   执铎所在的公立小学开设汉语课,正是海外汉语学习呈低龄化趋势的一个侧影。

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity.[1] The theory was first proposed by élie Cartan in 1922.

Overview

[edit]

Einstein–Cartan theory differs from general relativity in two ways:

(1) it is formulated within the framework of Riemann–Cartan geometry, which possesses a locally gauged Lorentz symmetry, while general relativity is formulated within the framework of Riemannian geometry, which does not;
(2) an additional set of equations are posed that relate torsion to spin.

This difference can be factored into

general relativity (Einstein–Hilbert) → general relativity (Palatini) → Einstein–Cartan

by first reformulating general relativity onto a Riemann–Cartan geometry, replacing the Einstein–Hilbert action over Riemannian geometry by the Palatini action over Riemann–Cartan geometry; and second, removing the zero torsion constraint from the Palatini action, which results in the additional set of equations for spin and torsion, as well as the addition of extra spin-related terms in the Einstein field equations themselves.

The theory of general relativity was originally formulated in the setting of Riemannian geometry by the Einstein–Hilbert action, out of which arise the Einstein field equations. At the time of its original formulation, there was no concept of Riemann–Cartan geometry. Nor was there a sufficient awareness of the concept of gauge symmetry to understand that Riemannian geometries do not possess the requisite structure to embody a locally gauged Lorentz symmetry, such as would be required to be able to express continuity equations and conservation laws for rotational and boost symmetries, or to describe spinors in curved spacetime geometries. The result of adding this infrastructure is a Riemann–Cartan geometry. In particular, to be able to describe spinors requires the inclusion of a spin structure, which suffices to produce such a geometry.

The chief difference between a Riemann–Cartan geometry and Riemannian geometry is that in the former, the affine connection is independent of the metric, while in the latter it is derived from the metric as the Levi-Civita connection, the difference between the two being referred to as the contorsion. In particular, the antisymmetric part of the connection (referred to as the torsion) is zero for Levi-Civita connections, as one of the defining conditions for such connections.

Because the contorsion can be expressed linearly in terms of the torsion, it is also possible to directly translate the Einstein–Hilbert action into a Riemann–Cartan geometry, the result being the Palatini action (see also Palatini variation). It is derived by rewriting the Einstein–Hilbert action in terms of the affine connection and then separately posing a constraint that forces both the torsion and contorsion to be zero, which thus forces the affine connection to be equal to the Levi-Civita connection. Because it is a direct translation of the action and field equations of general relativity, expressed in terms of the Levi-Civita connection, this may be regarded as the theory of general relativity, itself, transposed into the framework of Riemann–Cartan geometry.

Einstein–Cartan theory relaxes this condition and, correspondingly, relaxes general relativity's assumption that the affine connection have a vanishing antisymmetric part (torsion tensor). The action used is the same as the Palatini action, except that the constraint on the torsion is removed. This results in two differences from general relativity:

(1) the field equations are now expressed in terms of affine connection, rather than the Levi-Civita connection, and so have additional terms in Einstein's field equations involving the contorsion that are not present in the field equations derived from the Palatini formulation;
(2) an additional set of equations are now present which couple the torsion to the intrinsic angular momentum (spin) of matter, much in the same way in which the affine connection is coupled to the energy and momentum of matter.

In Einstein–Cartan theory, the torsion is now a variable in the principle of stationary action that is coupled to a curved spacetime formulation of spin (the spin tensor). These extra equations express the torsion linearly in terms of the spin tensor associated with the matter source, which entails that the torsion generally be non-zero inside matter.

A consequence of the linearity is that outside of matter there is zero torsion, so that the exterior geometry remains the same as what would be described in general relativity. The differences between Einstein–Cartan theory and general relativity (formulated either in terms of the Einstein–Hilbert action on Riemannian geometry or the Palatini action on Riemann–Cartan geometry) rest solely on what happens to the geometry inside matter sources. That is: "torsion does not propagate". Generalizations of the Einstein–Cartan action have been considered which allow for propagating torsion.[2]

Because Riemann–Cartan geometries have Lorentz symmetry as a local gauge symmetry, it is possible to formulate the associated conservation laws. In particular, regarding the metric and torsion tensors as independent variables gives the correct generalization of the conservation law for the total (orbital plus intrinsic) angular momentum to the presence of the gravitational field.

History

[edit]

The theory was first proposed by élie Cartan, who was inspired by Cosserat elasticity theory,[3][4] in 1922[5] and expounded in the following few years.[6][7][8] Albert Einstein became affiliated with the theory in 1928 during his unsuccessful attempt to match torsion to the electromagnetic field tensor as part of a unified field theory. This line of thought led him to the related but different theory of teleparallelism.[9]

Dennis Sciama[10] and Tom Kibble[11] independently revisited the theory in the 1960s.[12]

Einstein–Cartan theory has been historically overshadowed by its torsion-free counterpart and other alternatives like Brans–Dicke theory because torsion seemed to add little predictive benefit at the expense of the tractability of its equations[citation needed]. Since the Einstein–Cartan theory is purely classical, it also does not fully address the issue of quantum gravity.

In the Einstein–Cartan theory, the Dirac equation becomes nonlinear when it is expressed in terms of the Levi-Civita connection,[13] though it remains linear when expressed in terms of the connection native to the geometry. Because the torsion does not 'propagate', its relation to the spin tensor of the matter source is algebraic and it is possible to solve in terms of the spin tensor. In turn, the difference between the connection and Levi-Civita connection (the contorsion) can be solved in terms of the torsion. When the contorsion is back-substituted for in the Dirac equation, to reduce the connection to the Levi-Civita connection (e.g. in passing from equation (4.1) to equation (4.2) in [13]), this results in non-linear contributions arising, ultimately, from the Dirac field itself. If two or more Dirac fields are present, or other fields that carry spin, the non-linear additions to the Dirac equation of each field would include contributions from all of the other fields, as well.

Even though renowned physicists such as Steven Weinberg "never understood what is so important physically about the possibility of torsion in differential geometry", other physicists claim that theories with torsion are valuable.[14]

Field equations

[edit]

The Einstein field equations of general relativity can be derived by postulating the Einstein–Hilbert action to be the true action of spacetime and then varying that action with respect to the metric tensor. The field equations of Einstein–Cartan theory come from exactly the same approach, except that a general asymmetric affine connection is assumed rather than the symmetric Levi-Civita connection (i.e., spacetime is assumed to have torsion in addition to curvature), and then the metric and torsion are varied independently.

Let represent the Lagrangian density of matter and represent the Lagrangian density of the gravitational field. The Lagrangian density for the gravitational field in the Einstein–Cartan theory is proportional to the Ricci scalar:

where is the determinant of the metric tensor, and is a physical constant involving the gravitational constant and the speed of light. By Hamilton's principle, the variation of the total action for the gravitational field and matter vanishes:

The variation with respect to the metric tensor yields the Einstein equations:

where is the Ricci tensor and is the canonical stress–energy–momentum tensor. The Ricci tensor is no longer symmetric because the connection contains a nonzero torsion tensor; therefore, the right-hand side of the equation cannot be symmetric either, implying that must include an asymmetric contribution that can be shown to be related to the spin tensor. This canonical energy–momentum tensor is related to the more familiar symmetric energy–momentum tensor by the Belinfante–Rosenfeld procedure.

The variation with respect to the torsion tensor yields the Cartan spin connection equations

where is the spin tensor. Because the torsion equation is an algebraic constraint rather than a partial differential equation, the torsion field does not propagate as a wave, and vanishes outside of matter. Therefore, in principle the torsion can be algebraically eliminated from the theory in favor of the spin tensor, which generates an effective "spin–spin" nonlinear self-interaction inside matter. Torsion is equal to its source term and can be replaced by a boundary or a topological structure with a throat such as a "wormhole".[15]

Avoidance of singularities

[edit]

Recently, interest in Einstein–Cartan theory has been driven toward nonsingular black hole models[1] and cosmological implications, most importantly, the avoidance of a gravitational singularity at the beginning of the universe, such as in the black hole cosmology,[16] quantum cosmology,[17] static universe,[18] and cyclic model.[19]

Singularity theorems which are premised on and formulated within the setting of Riemannian geometry (e.g. Penrose–Hawking singularity theorems) need not hold in Riemann–Cartan geometry. Consequently, Einstein–Cartan theory is able to avoid the general-relativistic problem of the singularity at the Big Bang.[20][21] The minimal coupling between torsion and Dirac spinors generates an effective nonlinear spin–spin self-interaction, which becomes significant inside fermionic matter at extremely high densities. Such an interaction is conjectured to replace the singular Big Bang with a cusp-like Big Bounce at a minimum but finite scale factor, before which the observable universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic, providing a physical alternative to cosmic inflation. Torsion allows fermions to be spatially extended instead of "pointlike", which helps to avoid the formation of singularities such as black holes, removes the ultraviolet divergence in quantum field theory, and leads to the toroidal ring model of electrons.[22] According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular black hole. In the Einstein–Cartan theory, instead, the collapse reaches a bounce and forms a regular Einstein–Rosen bridge (wormhole) to a new, growing universe on the other side of the event horizon; pair production by the gravitational field after the bounce, when torsion is still strong, generates a finite period of inflation.[23][24]

Other

[edit]

Einstein–Cartan theory seems to allow gravitational shielding[25] and the oscillation of massless neutrinos without violating the equivalence principle.[26][27]

In addition, the Einstein–Cartan theory is also related to geometrodynamics[15][28] and the vortex theory of the atom.[29]

See also

[edit]

References

[edit]
  1. ^ a b Cabral, Francisco; Lobo, Francisco S. N.; Rubiera-Garcia, Diego (December 2019). "Einstein–Cartan–Dirac gravity with U(1) symmetry breaking". The European Physical Journal C. 79 (12): 1023. arXiv:1902.02222. Bibcode:2019EPJC...79.1023C. doi:10.1140/epjc/s10052-019-7536-3. ISSN 1434-6044.
  2. ^ Neville, Donald E. (15 February 1980). "Gravity theories with propagating torsion". Physical Review D. 21 (4): 867–873. Bibcode:1980PhRvD..21..867N. doi:10.1103/physrevd.21.867. ISSN 0556-2821.
  3. ^ Markus Lazar; Friedrich W. Hehl (2010). "Cartan's Spiral Staircase in Physics and, in Particular, in the Gauge Theory of Dislocations". Foundations of Physics. 40: 1298–1325. arXiv:0911.2121. doi:10.1007/s10701-010-9440-4.
  4. ^ R. S. Lakes (2021). "Experimental tests of rotation sensitivity in Cosserat elasticity and in gravitation". Zeitschrift für angewandte Mathematik und Physik. 72. doi:10.1007/s00033-021-01563-1.
  5. ^ élie Cartan (1922). "Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion". Comptes rendus de l'Académie des Sciences de Paris (in French). 174: 593–595.
  6. ^ Cartan, Elie (1923). "Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie)". Annales Scientifiques de l'école Normale Supérieure (in French). 40: 325–412. doi:10.24033/asens.751. ISSN 0012-9593.
  7. ^ Cartan, Elie (1924). "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite)". Annales Scientifiques de l'école Normale Supérieure (in French). 41: 1–25. doi:10.24033/asens.753. ISSN 0012-9593.
  8. ^ Cartan, Elie (1925). "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (deuxième partie)". Annales Scientifiques de l'école Normale Supérieure (in French). 42: 17–88. doi:10.24033/asens.761. ISSN 0012-9593.
  9. ^ Goenner, Hubert F. M. (2004). "On the History of Unified Field Theories". Living Reviews in Relativity. 7 (1): 2. Bibcode:2004LRR.....7....2G. doi:10.12942/lrr-2004-2. PMC 5256024. PMID 28179864.
  10. ^ Sciama, D. W. (2025-08-06). "The Physical Structure of General Relativity". Reviews of Modern Physics. 36 (1): 463–469. Bibcode:1964RvMP...36..463S. doi:10.1103/revmodphys.36.463. ISSN 0034-6861.
  11. ^ Kibble, T. W. B. (1961). "Lorentz Invariance and the Gravitational Field". Journal of Mathematical Physics. 2 (2): 212–221. Bibcode:1961JMP.....2..212K. doi:10.1063/1.1703702. ISSN 0022-2488. S2CID 54806287.
  12. ^ Hehl, Friedrich W.; von der Heyde, Paul; Kerlick, G. David; Nester, James M. (2025-08-06). "General relativity with spin and torsion: Foundations and prospects". Reviews of Modern Physics. 48 (3): 393–416. Bibcode:1976RvMP...48..393H. doi:10.1103/revmodphys.48.393. ISSN 0034-6861. S2CID 55726649.
  13. ^ a b Hehl, F. W.; Datta, B. K. (1971). "Nonlinear Spinor Equation and Asymmetric Connection in General Relativity". Journal of Mathematical Physics. 12 (7): 1334–1339. Bibcode:1971JMP....12.1334H. doi:10.1063/1.1665738. ISSN 0022-2488.
  14. ^ Hehl, Friedrich W. (2007). "Note on the torsion tensor". Physics Today. 60 (3): 16. Bibcode:2007PhT....60c..16H. doi:10.1063/1.2718743.
  15. ^ a b Richard J. Petti (1986). "On the local geometry of rotating matter". General Relativity and Gravitation. 18 (5): 441–460. Bibcode:1986GReGr..18..441P. doi:10.1007/bf00770462. ISSN 0001-7701. S2CID 120013580.
  16. ^ N. Pop?awski (2023). "Chapter 13: Gravitational Collapse with Torsion and Universe in a Black Hole". In C. Bambi (ed.). Regular Black Holes: Towards a New Paradigm of Gravitational Collapse. Springer. pp. 485–499. arXiv:2307.12190. doi:10.1007/978-981-99-1596-5_13.
  17. ^ Stefano Lucat; Tomislav Prokopec (2017). "Cosmological singularities and bounce in Cartan-Einstein theory". Journal of Cosmology and Astroparticle Physics. 2017. arXiv:1512.06074. doi:10.1088/1475-7516/2017/10/047.
  18. ^ K. Atazadeh (2014). "Stability of the Einstein static universe in Einstein-Cartan theory". Journal of Cosmology and Astroparticle Physics. 2014 (6): 020. arXiv:1401.7639. doi:10.1088/1475-7516/2014/06/020.
  19. ^ Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. (2020). "Cosmological bounces, cyclic universes, and effective cosmological constant in Einstein-Cartan-Dirac-Maxwell theory". Physical Review D. 102 (8): 083509. arXiv:2003.07463. doi:10.1103/PhysRevD.102.083509.
  20. ^ Pop?awski, Nikodem J. (2010). "Cosmology with torsion: An alternative to cosmic inflation". Physics Letters B. 694 (3): 181–185. arXiv:1007.0587. Bibcode:2010PhLB..694..181P. doi:10.1016/j.physletb.2010.09.056.
  21. ^ Pop?awski, Nikodem J. (2012). "Nonsingular, big-bounce cosmology from spinor–torsion coupling". Physical Review D. 85 (10): 107502. arXiv:1111.4595. Bibcode:2012PhRvD..85j7502P. doi:10.1103/PhysRevD.85.107502. S2CID 118434253.
  22. ^ Pop?awski, Nikodem J. (2010). "Nonsingular Dirac particles in spacetime with torsion". Physics Letters B. 690 (1): 73–77. arXiv:0910.1181. Bibcode:2010PhLB..690...73P. doi:10.1016/j.physletb.2010.04.073.
  23. ^ Pop?awski, N. (2016). "Universe in a black hole in Einstein-Cartan gravity". Astrophysical Journal. 832 (2): 96. arXiv:1410.3881. Bibcode:2016ApJ...832...96P. doi:10.3847/0004-637X/832/2/96. S2CID 119771613.
  24. ^ Unger, G.; Pop?awski, N. (2019). "Big Bounce and closed universe from spin and torsion". Astrophysical Journal. 870 (2): 78. arXiv:1808.08327. Bibcode:2019ApJ...870...78U. doi:10.3847/1538-4357/aaf169. S2CID 119514549.
  25. ^ V. de Sabbata; C. Sivaram (1991). "Gravimagnetic field, torsion, and gravitational shielding". Il Nuovo Cimento B (1971-1996). 106: 873–878. doi:10.1007/BF02723183.
  26. ^ V. De Sabbata; M. Gasperini (1981). "Neutrino oscillations in the presence of torsion". Il Nuovo Cimento A (1971-1996). 65 (4): 479–500. Bibcode:1981NCimA..65..479S. doi:10.1007/BF02902051.
  27. ^ Subhasish Chakrabarty; Amitabha Lahiri (2019). "Geometrical contribution to neutrino mass matrix". The European Physical Journal C. 79 (8): 697. arXiv:1904.06036. Bibcode:2019EPJC...79..697C. doi:10.1140/epjc/s10052-019-7209-2.
  28. ^ V. Dzhunushaliev; D. Singleton (1999). "Einstein–Cartan–Heisenberg theory of gravity with dynamical torsion". Physics Letters A. 257 (1–2): 7–13. arXiv:gr-qc/9810050. doi:10.1016/S0375-9601(99)00282-0.
  29. ^ Venzo de Sabbata; C. Sivaram (1995). "Torsion, string tension, and topological origin of charge and mass". Foundations of Physics Letters. 8: 375–380. doi:10.1007/BF02187817.

Further reading

[edit]
鹅厂是什么意思 白手套什么意思 84年什么命 腿麻木是什么原因引起的 00年属什么的
中性粒细胞高是什么感染 木鱼花是什么 什么的桌椅 333是什么意思 油粘米是什么米
痛风可以喝什么酒 瘘管是什么 尿常规挂什么科 单元剧是什么意思 永垂不朽的垂是什么意思
approval是什么意思 班门弄斧什么意思 双侧瞳孔缩小见于什么 p53野生型是什么意思 为什么要闰月
为什么会气血不足mmeoe.com 早餐有什么cl108k.com 脂肪肝什么症状hcv7jop7ns0r.cn 河蚌用什么呼吸hcv9jop1ns3r.cn 气胸是什么意思hcv9jop0ns6r.cn
窜稀是什么意思hcv9jop1ns0r.cn 花生和什么不能一起吃hcv7jop7ns0r.cn 颈椎退行性变是什么意思hcv9jop6ns9r.cn 西红柿和番茄有什么区别hcv9jop0ns7r.cn 金字旁乐读什么hcv8jop0ns0r.cn
出入是什么意思hcv8jop3ns4r.cn 沙发适合什么发型hcv8jop9ns0r.cn 蜂蜜吃有什么好处hcv9jop0ns7r.cn 喜欢蓝色的女人是什么性格hcv8jop8ns4r.cn 鲤鱼爱吃什么gysmod.com
高压低压是什么意思weuuu.com 皮肤科挂什么科hcv7jop6ns3r.cn 头孢是治疗什么病的sanhestory.com 血清果糖胺测定是什么hcv8jop6ns9r.cn 男人得了hpv有什么症状shenchushe.com
百度