梦到做饭是什么意思| 高胆固醇血症是什么病| 精子长什么样| ppi是什么意思啊| 没晨勃说明什么问题| 三七粉什么颜色| 1970年属什么| 正常高压是什么意思| 什么空如洗| 74年属什么| 做梦梦到钱是什么预兆| 3.17是什么星座| 痹病是什么意思| 白细胞酯酶阳性是什么| 颈动脉强回声斑块是什么意思| 片仔癀是什么东西| 脚趾头麻木是什么原因引起的| 三长两短是什么意思| poems是什么意思| 死精是什么原因造成的| 精斑是什么| 心电图pr间期缩短是什么意思| x光是什么| 去湿气吃什么| 脑血管堵塞吃什么药| 浅笑是什么意思| 铁线虫是什么| 乌龟最喜欢吃什么| 老娘们是什么意思| 生物科技是做什么的| 高等院校是什么意思| 高字是什么结构| 血热吃什么药可以凉血| 忠心不二是什么生肖| 甲亢可以吃什么水果| 利空是什么意思| 梦见给死人烧纸钱是什么意思| 口唇疱疹用什么药膏| 亲戚是什么意思| 钡餐造影能查出什么| 深海鱼油起什么作用| 强悍是什么意思| 夏天适合种植什么蔬菜| 测测你天生靠什么吃饭| 胃胀气是什么原因| 为什么北方人比南方人高| 肚脐眼周围痛挂什么科| 6.25是什么日子| 梦到和婆婆吵架是什么意思| 卵泡排出来是什么样的| 梦见梳头发是什么意思| 吃什么可以提高代谢| 拿手机手抖是什么原因| 眼睛干涩用什么眼药水好| 自然色是什么颜色| 梦见长大水是什么意思| 梦见租房子住是什么意思| 小媳妇是什么意思| 高铁列车长是什么级别| 痛风吃什么好| 属兔是什么命| 一根长寿眉预示什么| 春晓描写的是什么季节| 舌加氏念什么| 混油皮是什么特征| 凌晨四点是什么时辰| 丝瓜和什么相克| 一个口四个又念什么| 肾小球滤过率偏高说明什么| 吃番茄有什么好处| 含漱是什么意思| 乙肝表面抗体定量偏高什么意思| 热量是什么| am和pm是什么意思| 嫌恶是什么意思| 猫什么时候打疫苗| 手腕痛是什么原因| 脂肪瘤是什么原因引起的| 六月19是什么日子| 什么时候会有孕吐反应| 梦到死人是什么预兆| 八月十六号是什么星座| 今天股市为什么大跌| 血红蛋白偏低是什么意思| 大是大非是什么意思| 做空什么意思| 什么是碱性磷酸酶高怎么回事| 脚脱皮用什么药膏| 硌得慌是什么意思| 鼻子上长脓包型痘痘是什么原因| 今年是什么年天干地支| 鲁迅原名是什么| 韩国的思密达是什么意思| c60是什么| 正高是什么级别| dha是补什么的| hc是胎儿的什么| 办理港澳通行证需要带什么证件| 睾酮是什么意思| 吃什么药能死| 鸡男配什么属相最好| 口腔溃疡喝什么饮料| 蛋白低是什么原因| 什么手机拍照效果最好| 肋骨突出是什么原因| 流产后不能吃什么东西| 今年22岁属什么生肖| 刘的五行属什么| 吃维生素b族有什么好处| 活塞运动是什么| 前列腺多发钙化灶是什么意思| 长期咳白痰是什么原因| 转归是什么意思| 生理期提前是什么原因| 吃生姜有什么好处| 脚后跟疼为什么| 黑布林是什么水果| 黑糖是什么糖| 热玛吉是做什么的| 身上长水泡是什么原因| 重生什么意思| 什么药补血最快| 什么是灰指甲| 皮下囊肿是什么原因引起的| 外阴瘙痒用什么药膏擦| 平仓什么意思| 现充是什么| 气短心悸是什么意思| 农业户口和居民户口有什么区别| 优衣库属于什么档次| 村里入党需要什么条件| 警备区是干什么的| 黄水晶五行属什么| 什么护肤品最好用| 乳腺看什么科| 血糖高的人早餐吃什么好| 床褥是什么| 食物过敏吃什么药| 红烧排骨用什么排骨比较好| 盆腔积液是什么意思啊| 孕妇快生了有什么症状| 皮肤病吃什么药最好| 两个马念什么| 同一首歌为什么停播了| 西洋参什么季节吃最好| sub是什么意思| 梦到掉头发是什么意思| 伤心的反义词是什么| 尾盘放量拉升意味着什么| 桥本氏甲状腺炎吃什么药| 有机可乘是什么意思| 结婚登记需要什么| 阿西吧什么意思| poscer是什么牌子手表| 螳螂是什么生肖| 胃部间质瘤是什么性质的瘤| 心脏支架和搭桥有什么区别| 梦见家里发大水了是什么征兆| 牙龈出血挂什么科| 丙烯颜料用什么洗掉| 嘴唇发乌是什么原因| 短纤是什么| 格列本脲和格列美脲有什么区别| 尔尔是什么意思| s是什么牌子| 杏仁有什么功效| 比萨斜塔为什么是斜的| 巨蟹男喜欢什么样的女生| 神经性头疼是什么症状| 增生性贫血是什么意思| 一点小事就暴躁的人是什么病| 蚊虫叮咬用什么药| 白果治什么病| 年轻人能为世界做什么| 麦粒肿挂什么科| 眉毛淡的男人代表什么| 唐山大地震是什么时候| silk是什么意思| 心脏反流吃什么药| 蚜虫用什么药| tc什么意思| 禅心是什么意思| app是什么缩写| 1为什么读yao| 菊花代表什么| 什么脸型最好看| lf是什么牌子| 优雅从容的意思是什么| 空调干燥是什么意思| 为什么筋膜炎一躺下才会疼| ercp是什么| 防微杜渐什么意思| 南乳是什么| 外来猫进家有什么预兆| 流产会出现什么症状| 检车需要什么手续| 什么样的沙滩| 灵敏度是什么意思| 射精无力吃什么药最佳| 肌醇是什么东西| 心脏缺血吃什么药好| 脸痒痒用什么方法可以缓解| 旖旎是什么意思| 七月十五有什么忌讳| foxer是什么牌子| 骨质疏松打什么针| 锤子是什么意思| 1998年出生属什么| 老百姓是什么意思| 三大精神是什么| t和p是什么意思| 放养是什么意思| 一凉就咳嗽是什么原因| 六月中旬是什么时候| 手抖是什么原因造成的| 11月17号是什么星座| 心电图p是什么意思| 女性尿路感染什么原因引起的| 什么叫同人文| 依托考昔片是什么药| 胃食管反流病吃什么药| 懦弱什么意思| 什么叫无氧运动| 胃造影和胃镜有什么区别| 抹茶是什么茶| 又什么又什么的词语| 肝弥漫性病变是什么意思| 喉结大是什么原因| 粉刺是什么东西| 小满是什么意思| 黄瓜籽粉有什么作用| 尿频尿急尿不尽挂什么科| 什么是买手店| 迂回是什么意思| 奎宁现在叫什么药| 1是什么数| 商纣王姓什么| 为什么拉屎有血| 人出汗多是什么原因| 什么是智商| 牙周炎有什么症状| 什么是干燥综合症| 6.5是什么星座| 邪魅一笑是什么意思| 硝是什么东西| 疝气是什么病| 五点是什么时辰| 右胳膊发麻是什么原因| 高筋面粉是什么意思| 神经递质是什么| 睡眠不好总做梦是什么原因| 候车是什么意思| 6.4是什么星座| 月光像什么| 1887年属什么生肖| 腋臭挂什么科室| 维生素b是补什么的| 农历10月19日是什么星座| 为什么会晕车| 土克水是什么意思| 毒灵芝长什么样| 什么病会导致不来月经| on是什么牌子| 一个米一个参念什么| 百度Jump to content

关于开展社区无入室犯罪类案件评比的建议

From Wikipedia, the free encyclopedia
百度 (五)发挥高技能领军人才在技术创新等方面的重要作用。

In mathematics, the ratio test is a test (or "criterion") for the convergence of a series

where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.[1]

The test

[edit]
Decision diagram for the ratio test

The usual form of the test makes use of the limit

The ratio test states that:

  • if L < 1 then the series converges absolutely;
  • if L > 1 then the series diverges;
  • if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.

It is possible to make the ratio test applicable to certain cases where the limit L fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when L = 1. More specifically, let

.

Then the ratio test states that:[2][3]

  • if R < 1, the series converges absolutely;
  • if r > 1, the series diverges; or equivalently if for all large n (regardless of the value of r), the series also diverges; this is because is nonzero and increasing and hence an does not approach zero;
  • the test is otherwise inconclusive.

If the limit L in (1) exists, we must have L = R = r. So the original ratio test is a weaker version of the refined one.

Examples

[edit]

Convergent because L < 1

[edit]

Consider the series

Applying the ratio test, one computes the limit

Since this limit is less than 1, the series converges.

Divergent because L > 1

[edit]

Consider the series

Putting this into the ratio test:

Thus the series diverges.

Inconclusive because L = 1

[edit]

Consider the three series

The first series (1 + 1 + 1 + 1 + ?) diverges, the second (the one central to the Basel problem) converges absolutely and the third (the alternating harmonic series) converges conditionally. However, the term-by-term magnitude ratios of the three series are       and   . So, in all three, the limit is equal to 1. This illustrates that when L = 1, the series may converge or diverge: the ratio test is inconclusive. In such cases, more refined tests are required to determine convergence or divergence.

Proof

[edit]
In this example, the ratio of adjacent terms in the blue sequence converges to L=1/2. We choose r = (L+1)/2 = 3/4. Then the blue sequence is dominated by the red sequence rk for all n ≥ 2. The red sequence converges, so the blue sequence does as well.

Below is a proof of the validity of the generalized ratio test.

Suppose that . We also suppose that has infinite non-zero members, otherwise the series is just a finite sum hence it converges. Then there exists some such that there exists a natural number satisfying and for all , because if no such exists then there exists arbitrarily large satisfying for every , then we can find a subsequence satisfying , but this contradicts the fact that is the limit inferior of as , implying the existence of . Then we notice that for , . Notice that so as and , this implies diverges so the series diverges by the n-th term test.
Now suppose . Similar to the above case, we may find a natural number and a such that for . Then The series is the geometric series with common ratio , hence which is finite. The sum is a finite sum and hence it is bounded, this implies the series converges by the monotone convergence theorem and the series converges by the absolute convergence test.
When the limit exists and equals to then , this gives the original ratio test.

Extensions for L = 1

[edit]

As seen in the previous example, the ratio test may be inconclusive when the limit of the ratio is 1. Extensions to the ratio test, however, sometimes allow one to deal with this case.[4][5][6][7][8][9][10][11]

In all the tests below one assumes that Σan is a sum with positive an. These tests also may be applied to any series with a finite number of negative terms. Any such series may be written as:

where aN is the highest-indexed negative term. The first expression on the right is a partial sum which will be finite, and so the convergence of the entire series will be determined by the convergence properties of the second expression on the right, which may be re-indexed to form a series of all positive terms beginning at n=1.

Each test defines a test parameter (ρn) which specifies the behavior of that parameter needed to establish convergence or divergence. For each test, a weaker form of the test exists which will instead place restrictions upon limn->∞ρn.

All of the tests have regions in which they fail to describe the convergence properties of Σan. In fact, no convergence test can fully describe the convergence properties of the series.[4][10] This is because if Σan is convergent, a second convergent series Σbn can be found which converges more slowly: i.e., it has the property that limn->∞ (bn/an) = ∞. Furthermore, if Σan is divergent, a second divergent series Σbn can be found which diverges more slowly: i.e., it has the property that limn->∞ (bn/an) = 0. Convergence tests essentially use the comparison test on some particular family of an, and fail for sequences which converge or diverge more slowly.

De Morgan hierarchy

[edit]

Augustus De Morgan proposed a hierarchy of ratio-type tests[4][9]

The ratio test parameters () below all generally involve terms of the form . This term may be multiplied by to yield . This term can replace the former term in the definition of the test parameters and the conclusions drawn will remain the same. Accordingly, there will be no distinction drawn between references which use one or the other form of the test parameter.

1. d'Alembert's ratio test

[edit]

The first test in the De Morgan hierarchy is the ratio test as described above.

2. Raabe's test

[edit]

This extension is due to Joseph Ludwig Raabe. Define:

(and some extra terms, see Ali, Blackburn, Feld, Duris (none), Duris2)[clarification needed]

The series will:[7][10][9]

  • Converge when there exists a c>1 such that for all n>N.
  • Diverge when for all n>N.
  • Otherwise, the test is inconclusive.

For the limit version,[12] the series will:

  • Converge if (this includes the case ρ = ∞)
  • Diverge if .
  • If ρ = 1, the test is inconclusive.

When the above limit does not exist, it may be possible to use limits superior and inferior.[4] The series will:

  • Converge if
  • Diverge if
  • Otherwise, the test is inconclusive.
Proof of Raabe's test
[edit]

Defining , we need not assume the limit exists; if , then diverges, while if the sum converges.

The proof proceeds essentially by comparison with . Suppose first that . Of course if then for large , so the sum diverges; assume then that . There exists such that for all , which is to say that . Thus , which implies that for ; since this shows that diverges.

The proof of the other half is entirely analogous, with most of the inequalities simply reversed. We need a preliminary inequality to use in place of the simple that was used above: Fix and . Note that . So ; hence .

Suppose now that . Arguing as in the first paragraph, using the inequality established in the previous paragraph, we see that there exists such that for ; since this shows that converges.

3. Bertrand's test

[edit]

This extension is due to Joseph Bertrand and Augustus De Morgan.

Defining:

Bertrand's test[4][10] asserts that the series will:

  • Converge when there exists a c>1 such that for all n>N.
  • Diverge when for all n>N.
  • Otherwise, the test is inconclusive.

For the limit version, the series will:

  • Converge if (this includes the case ρ = ∞)
  • Diverge if .
  • If ρ = 1, the test is inconclusive.

When the above limit does not exist, it may be possible to use limits superior and inferior.[4][9][13] The series will:

  • Converge if
  • Diverge if
  • Otherwise, the test is inconclusive.

4. Extended Bertrand's test

[edit]

This extension probably appeared at the first time by Margaret Martin in 1941.[14] A short proof based on Kummer's test and without technical assumptions (such as existence of the limits, for example) was provided by Vyacheslav Abramov in 2019.[15]

Let be an integer, and let denote the th iterate of natural logarithm, i.e. and for any , .

Suppose that the ratio , when is large, can be presented in the form

(The empty sum is assumed to be 0. With , the test reduces to Bertrand's test.)

The value can be presented explicitly in the form

Extended Bertrand's test asserts that the series

  • Converge when there exists a such that for all .
  • Diverge when for all .
  • Otherwise, the test is inconclusive.

For the limit version, the series

  • Converge if (this includes the case )
  • Diverge if .
  • If , the test is inconclusive.

When the above limit does not exist, it may be possible to use limits superior and inferior. The series

  • Converge if
  • Diverge if
  • Otherwise, the test is inconclusive.

For applications of Extended Bertrand's test see birth–death process.

5. Gauss's test

[edit]

This extension is due to Carl Friedrich Gauss.

Assuming an > 0 and r > 1, if a bounded sequence Cn can be found such that for all n:[5][7][9][10]

then the series will:

  • Converge if
  • Diverge if

6. Kummer's test

[edit]

This extension is due to Ernst Kummer.

Let ζn be an auxiliary sequence of positive constants. Define

Kummer's test states that the series will:[5][6][10][11]

  • Converge if there exists a such that for all n>N. (Note this is not the same as saying )
  • Diverge if for all n>N and diverges.

For the limit version, the series will:[16][7][9]

  • Converge if (this includes the case ρ = ∞)
  • Diverge if and diverges.
  • Otherwise the test is inconclusive

When the above limit does not exist, it may be possible to use limits superior and inferior.[4] The series will

  • Converge if
  • Diverge if and diverges.
Special cases
[edit]

All of the tests in De Morgan's hierarchy except Gauss's test can easily be seen as special cases of Kummer's test:[4]

  • For the ratio test, let ζn=1. Then:
  • For Raabe's test, let ζn=n. Then:
  • For Bertrand's test, let ζn=n ln(n). Then:
Using and approximating for large n, which is negligible compared to the other terms, may be written:
  • For Extended Bertrand's test, let From the Taylor series expansion for large we arrive at the approximation

where the empty product is assumed to be 1. Then,

Hence,

Note that for these four tests, the higher they are in the De Morgan hierarchy, the more slowly the series diverges.

Proof of Kummer's test
[edit]

If then fix a positive number . There exists a natural number such that for every

Since , for every

In particular for all which means that starting from the index the sequence is monotonically decreasing and positive which in particular implies that it is bounded below by 0. Therefore, the limit

exists.

This implies that the positive telescoping series

is convergent,

and since for all

by the direct comparison test for positive series, the series is convergent.

On the other hand, if , then there is an N such that is increasing for . In particular, there exists an for which for all , and so diverges by comparison with .

Tong's modification of Kummer's test

[edit]

A new version of Kummer's test was established by Tong.[6] See also [8][11][17] for further discussions and new proofs. The provided modification of Kummer's theorem characterizes all positive series, and the convergence or divergence can be formulated in the form of two necessary and sufficient conditions, one for convergence and another for divergence.

  • Series converges if and only if there exists a positive sequence , , such that
  • Series diverges if and only if there exists a positive sequence , , such that and

The first of these statements can be simplified as follows:[18]

  • Series converges if and only if there exists a positive sequence , , such that

The second statement can be simplified similarly:

  • Series diverges if and only if there exists a positive sequence , , such that and

However, it becomes useless, since the condition in this case reduces to the original claim

Frink's ratio test

[edit]

Another ratio test that can be set in the framework of Kummer's theorem was presented by Orrin Frink[19] 1948.

Suppose is a sequence in ,

  • If , then the series converges absolutely.
  • If there is such that for all , then diverges.

This result reduces to a comparison of with a power series , and can be seen to be related to Raabe's test.[20]

Ali's second ratio test

[edit]

A more refined ratio test is the second ratio test:[7][9] For define:

By the second ratio test, the series will:

  • Converge if
  • Diverge if
  • If then the test is inconclusive.

If the above limits do not exist, it may be possible to use the limits superior and inferior. Define:

Then the series will:

  • Converge if
  • Diverge if
  • If then the test is inconclusive.

Ali's mth ratio test

[edit]

This test is a direct extension of the second ratio test.[7][9] For and positive define:

By the th ratio test, the series will:

  • Converge if
  • Diverge if
  • If then the test is inconclusive.

If the above limits do not exist, it may be possible to use the limits superior and inferior. For define:

Then the series will:

  • Converge if
  • Diverge if
  • If , then the test is inconclusive.

Ali--Deutsche Cohen φ-ratio test

[edit]

This test is an extension of the th ratio test.[21]

Assume that the sequence is a positive decreasing sequence.

Let be such that exists. Denote , and assume .

Assume also that

Then the series will:

  • Converge if
  • Diverge if
  • If , then the test is inconclusive.

See also

[edit]

Footnotes

[edit]
  1. ^ Weisstein, Eric W. "Ratio Test". MathWorld.
  2. ^ Rudin 1976, §3.34
  3. ^ Apostol 1974, §8.14
  4. ^ a b c d e f g h Bromwich, T. J. I'A (1908). An Introduction To The Theory of Infinite Series. Merchant Books.
  5. ^ a b c Knopp, Konrad (1954). Theory and Application of Infinite Series. London: Blackie & Son Ltd.
  6. ^ a b c Tong, Jingcheng (May 1994). "Kummer's Test Gives Characterizations for Convergence or Divergence of all Positive Series". The American Mathematical Monthly. 101 (5): 450–452. doi:10.2307/2974907. JSTOR 2974907.
  7. ^ a b c d e f Ali, Sayel A. (2008). "The mth Ratio Test: New Convergence Test for Series". The American Mathematical Monthly. 115 (6): 514–524. doi:10.1080/00029890.2008.11920558. S2CID 16336333. Retrieved 4 September 2024.
  8. ^ a b Samelson, Hans (November 1995). "More on Kummer's Test". The American Mathematical Monthly. 102 (9): 817–818. doi:10.2307/2974510. JSTOR 2974510.
  9. ^ a b c d e f g h Blackburn, Kyle (4 May 2012). "The mth Ratio Convergence Test and Other Unconventional Convergence Tests" (PDF). University of Washington College of Arts and Sciences. Retrieved 27 November 2018.
  10. ^ a b c d e f ?uri?, Franti?ek (2009). Infinite series: Convergence tests (Bachelor's thesis). Katedra Informatiky, Fakulta Matematiky, Fyziky a Informatiky, Univerzita Komenského, Bratislava. Retrieved 28 November 2018.
  11. ^ a b c ?uri?, Franti?ek (2 February 2018). "On Kummer's test of convergence and its relation to basic comparison tests". arXiv:1612.05167 [math.HO].
  12. ^ Weisstein, Eric W. "Raabe's Test". MathWorld.
  13. ^ Weisstein, Eric W. "Bertrand's Test". MathWorld.
  14. ^ Martin, Margaret (1941). "A sequence of limit tests for the convergence of series" (PDF). Bulletin of the American Mathematical Society. 47 (6): 452–457. doi:10.1090/S0002-9904-1941-07477-X.
  15. ^ Abramov, Vyacheslav M. (May 2020). "Extension of the Bertrand–De Morgan test and its application". The American Mathematical Monthly. 127 (5): 444–448. arXiv:1901.05843. doi:10.1080/00029890.2020.1722551. S2CID 199552015.
  16. ^ Weisstein, Eric W. "Kummer's Test". MathWorld.
  17. ^ Abramov, Vyacheslav, M. (21 June 2021). "A simple proof of Tong's theorem". arXiv:2106.13808 [math.HO].{{cite arXiv}}: CS1 maint: multiple names: authors list (link)
  18. ^ Abramov, Vyacheslav M. (May 2022). "Evaluating the sum of convergent positive series" (PDF). Publications de l'Institut Mathématique. Nouvelle Série. 111 (125): 41–53. doi:10.2298/PIM2225041A. S2CID 237499616.
  19. ^ Frink, Orrin (October 1948). "A ratio test". Bulletin of the American Mathematical Society. 54 (10): 953–953.
  20. ^ Stark, Marceli (1949). "On the ratio test of Frink". Colloquium Mathematicum. 2 (1): 46–47.
  21. ^ Ali, Sayel; Cohen, Marion Deutsche (2012). "phi-ratio tests". Elemente der Mathematik. 67 (4): 164–168. doi:10.4171/EM/206.

References

[edit]
左侧卵巢内囊性回声是什么意思 诸葛亮字什么 女朋友生日送什么礼物 酸菜吃多了有什么危害 最近老是犯困想睡觉是什么原因
布洛芬起什么作用 腰椎间盘突出适合什么运动 头顶秃了一小块是什么原因怎么办 总钙是什么意思 叶酸偏高有什么影响
夏天吃什么水果好 吃什么升血小板最快最好 小蓝瓶是什么 脂肪肝有什么危害 血小板是干什么用的
可乐必妥是什么药 吃什么补白细胞快 x线检查是什么 犯口舌是什么意思 12月8号什么星座
孙尚香字什么hcv9jop0ns4r.cn 西红柿不能和什么一起吃hcv8jop1ns4r.cn 伶字五行属什么wuhaiwuya.com 六扇门是什么意思hcv8jop1ns9r.cn 恶心反胃想吐吃什么药hcv8jop5ns7r.cn
尿常规检查挂什么科hcv8jop5ns4r.cn 生姜红糖水有什么作用huizhijixie.com 耗儿鱼是什么鱼hcv9jop7ns9r.cn 普拉提是什么运动hcv8jop4ns3r.cn 臀纹不对称有什么影响helloaicloud.com
吃什么子宫肌瘤会消除hcv7jop9ns1r.cn 殷是什么意思hcv8jop1ns5r.cn 土的行业有什么工作hcv7jop6ns8r.cn 屁眼火辣辣的疼是什么原因xjhesheng.com 胃动力不足是什么原因造成的hcv8jop3ns7r.cn
双龙什么hcv8jop1ns0r.cn 苯是什么hcv8jop3ns1r.cn 弥陀是什么意思fenrenren.com 梦见自行车是什么意思hcv8jop0ns8r.cn 糖尿病吃什么水果好hcv8jop7ns4r.cn
百度