伏羲和女娲是什么关系| 卵巢囊性包块是什么意思| 鳞状上皮炎症反应性改变是什么意思| 纳财适合做什么| 梦见孕妇大肚子是什么意思| 河南为什么叫中原| 肠胃炎是什么| 异地补办身份证需要什么手续| 乘风破浪是什么意思| 高压氧舱治疗什么效果| 二级产前超声检查是什么| 水泡用什么药膏最有效| 猝死什么意思| 宫颈纳囊什么意思| 晚上头疼是什么原因| 犯口舌是什么意思| 什么手机性价比高| 百合什么时候种植| 为什么尽量抽混合型烟| 826是什么意思| 冬天有什么花| 为什么一到晚上就痒| 检查肺结节挂什么科| 崛起是什么意思| 2000年属什么生肖| 什么运动瘦肚子最快| 小朋友口臭是什么原因| 葡萄酒中的单宁是什么| 收入是什么意思| 女人喝白茶有什么好处| 欧阳修字什么号什么| 总是想吐是什么原因| 后巩膜葡萄肿是什么意思| eb病毒igg抗体阳性是什么意思| 跌倒摔伤用什么药| 江西特产有什么| 灻是什么意思| 小排畸主要检查什么| 张飞穿针的歇后语是什么| 接盘是什么意思| 性取向是什么意思| 溜冰是什么意思| 吃得什么填词语| 巧克力囊肿有什么症状表现| 60岁是什么之年| 家宴是什么意思| 淋巴结用什么药效果好| 反物质是什么东西| md鞋底是什么材质| 亲子鉴定挂什么科| 血糖低吃什么补得最快| 翠是什么颜色| 吃什么药提高免疫力| 痛风什么东西不能吃| rt是什么| 碳酸氢钠有什么作用| 怀孕16周要做什么检查| 208是什么意思| 什么心丧气| 鱼腥草长什么样| 半夜惊醒是什么原因| 良字少一点是什么字| 孕妇可以喝什么茶| 不小心怀孕了吃什么药可以流掉| 尿臭是什么病| 溃疡用什么药| 梦见自己流产了是什么征兆| 吃什么药可以延长射精| 硫酸羟氯喹片治什么病| 西洋参吃了有什么好处| 纯水是什么水| 什么花最香| 什么是前奶什么是后奶| 玉米什么的什么的| 山茱萸是什么| 电器发生火灾用什么灭火器| 甲方乙方是什么意思| 怀孕吃什么有营养| electrolux是什么牌子| gm墨镜是什么牌子| 男人脚底发热是什么病| 逾期不候什么意思| 高血压能吃什么| 脚底出汗什么原因| 幼小衔接是什么意思| 什么生肖最好| 高血压饮食上注意什么| 10月出生是什么星座| 6月18日什么星座| 限行是什么意思| 圈层是什么意思| 长歌怀采薇是什么意思| 汗脚是什么原因引起的| 尿潜血弱阳性是什么意思| 梦到好多蛇是什么意思| 辽宁舰舰长是什么军衔| 肠化生是什么症状| 唐氏综合症是什么| r代表什么| 大拇指旁边的手指叫什么| 湿化瓶内放什么水| 疝气长在什么位置图片| 心脏供血不足吃什么药| 核磁共振是查什么的| 为什么经常放屁| 蒸馒头用什么面粉| hpv是什么病毒| 1度房室传导阻滞是什么意思| 折寿是什么意思| 入伏吃羊肉有什么好处| 古尔邦节什么意思| 果糖是什么| 中药用什么锅熬效果最佳| 怎么知道自己适合什么发型| 葡萄糖阳性是什么意思| 老公工作劳累炖什么汤| 小叶苦丁茶有什么作用和功效| 属龙跟什么属相最配| 偏头疼挂什么科室| 后卫是什么意思| 什么是刮痧| 吃红薯有什么好处和坏处| 门道是什么意思| 红豆和什么搭配最好| 28岁属什么的| 甲沟炎用什么药| 掉头发吃什么恢复最快| 拉肚子吃什么饭| 梦见自己出嫁是什么意思| 什么主筋骨| 曹操字什么| 人为什么要喝水| 矫正度数是什么意思| 耳后长痣代表什么意思| 艾滋病初期有什么症状| 红军为什么要长征| 海归是什么意思| 为什么一直拉肚子| 水蛭怕什么| 怀孕初期应该注意什么| 降压药什么时候吃| 骨盆前倾有什么危害| 指滑是什么意思| 有品味什么意思| 髂静脉在什么位置| 毛峰是什么茶| 114514什么意思| 什么的黄瓜| 过敏是什么样子的| 灯笼裤配什么鞋子好看| 孙权与孙策是什么关系| 心率失常是什么意思| 奀是什么意思| 月底是什么时候| 什么食物铅含量高| 胃泌素释放肽前体高是什么原因| vam是什么意思| 医生五行属什么| 广东有什么城市| 备孕吃叶酸有什么好处| 黑匣子是什么| 悱恻是什么意思| 青核桃皮的功效与作用是什么| 什么的麦子| 敲锣打鼓是什么生肖| 什么的白云| 猴和什么属相相冲相克| 属羊的和什么属相不合| 成龙真名叫什么名字| 梦见养猪是什么意思| 什么锅好| callme是什么意思| 卵巢畸胎瘤是什么病| 喝黄瓜汁有什么好处| 七一年属什么| 食管挂什么科| 气短是什么原因| 小鱼吃什么| 美国为什么不敢打朝鲜| 梦见吃蜂蜜是什么预兆| 做梦烧纸钱什么意思| 孕妇血糖高吃什么| 女人梦见自己掉牙齿是什么征兆| 干贝是什么东西| 皮肤黄吃什么可以改善| 婴儿的腿为什么是弯弯的| 辰砂和朱砂有什么区别| 哈尔滨机场叫什么名字| 吃毓婷有什么副作用| 樱菜是什么菜| 吃鱼眼睛有什么好处| 知了吃什么食物| 半路杀出个程咬金是什么意思| 什么蔬菜含维生素c最多| 与世隔绝的绝是什么意思| 性早熟是什么意思| police是什么意思| 心境是什么意思| 景色奇异的异是什么意思| 广州有什么好吃的| 受体是什么| 硫化氢什么味道| rs是什么意思| 6月7日是什么星座| 梦见摘辣椒是什么意思| 医生是什么生肖| 接骨草长什么样| 醋酸是什么面料| 草酸钙结晶是什么意思| 餐后血糖高吃什么药| 为什么没有西京| 手麻看什么科| 学护理需要什么条件| 爬山是什么意思| 37岁属什么的生肖| 软脚虾是什么意思| 组织细胞是什么| 近视散光是什么意思| 肾结石吃什么药| 1938年中国发生了什么| 感冒发烧可以吃什么水果| 什么是肺部腺性肿瘤| 药娘吃的什么药| 十一月十一号是什么星座| 上升星座什么意思| 坤造是什么意思| 流年什么意思| 去肝火喝什么茶效果最好| 小狗什么时候换牙| 枫叶是什么树| 阴壁有许多颗粒是什么原因| galaxy是什么牌子| 什么是免疫组化检查| 什么叫五福临门| 脂溢性皮炎有什么症状| 贝母是什么| 阴道炎是什么症状| 风热感冒吃什么食物| 戊土是什么土| 软助什么意思| 哺乳期胃疼可以吃什么药| 什么是结核病| 心血管病人吃什么最好| 什么是黄色视频| 白衣天使是什么意思| 2008属什么| 青少年膝盖痛什么原因| 什么时候是情人节| 奔走相告的走是什么意思| 医生五行属什么| 熬夜伤什么器官| cnd是什么意思| 发热挂什么科| 菊花什么时候开| 什么车最长| 1921年是什么年| 女性长期缺维d会带来什么病| 为什么会被鬼压床| 中秋节送礼送什么| 堪忧是什么意思| prawn是什么意思| 柱状上皮外移什么意思| 香米是什么米| 杭州都有什么区| 百度Jump to content

什么什么万分

From Wikipedia, the free encyclopedia
百度 没想到的是,当地对他的支持并没有结束。

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging surfaces at the atomic level. The first successful scanning tunneling microscope experiment was done by Gerd Binnig and Heinrich Rohrer. The key to their success was using a feedback loop to regulate gap distance between the sample and the probe.[1]

Many scanning probe microscopes can image several interactions simultaneously. The manner of using these interactions to obtain an image is generally called a mode.

The resolution varies somewhat from technique to technique, but some probe techniques reach a rather impressive atomic resolution.[citation needed] This is largely because piezoelectric actuators can execute motions with a precision and accuracy at the atomic level or better on electronic command. This family of techniques can be called "piezoelectric techniques". The other common denominator is that the data are typically obtained as a two-dimensional grid of data points, visualized in false color as a computer image.

Established types

[edit]

Image formation

[edit]

To form images, scanning probe microscopes raster scan the tip over the surface. At discrete points in the raster scan a value is recorded (which value depends on the type of SPM and the mode of operation, see below). These recorded values are displayed as a heat map to produce the final STM images, usually using a black and white or an orange color scale.

Constant interaction mode

[edit]

In constant interaction mode (often referred to as "in feedback"), a feedback loop is used to physically move the probe closer to or further from the surface (in the z axis) under study to maintain a constant interaction. This interaction depends on the type of SPM, for scanning tunneling microscopy the interaction is the tunnel current, for contact mode AFM or MFM it is the cantilever deflection, etc. The type of feedback loop used is usually a PI-loop, which is a PID-loop where the differential gain has been set to zero (as it amplifies noise). The z position of the tip (scanning plane is the xy-plane) is recorded periodically and displayed as a heat map. This is normally referred to as a topography image.

In this mode a second image, known as the ″error signal" or "error image" is also taken, which is a heat map of the interaction which was fed back on. Under perfect operation this image would be a blank at a constant value which was set on the feedback loop. Under real operation the image shows noise and often some indication of the surface structure. The user can use this image to edit the feedback gains to minimise features in the error signal.

If the gains are set incorrectly, many imaging artifacts are possible. If gains are too low features can appear smeared. If the gains are too high the feedback can become unstable and oscillate, producing striped features in the images which are not physical.

Constant height mode

[edit]

In constant height mode the probe is not moved in the z-axis during the raster scan. Instead the value of the interaction under study is recorded (i.e. the tunnel current for STM, or the cantilever oscillation amplitude for amplitude modulated non-contact AFM). This recorded information is displayed as a heat map, and is usually referred to as a constant height image.

Constant height imaging is much more difficult than constant interaction imaging as the probe is much more likely to crash into the sample surface.[citation needed] Usually before performing constant height imaging one must image in constant interaction mode to check the surface has no large contaminants in the imaging region, to measure and correct for the sample tilt, and (especially for slow scans) to measure and correct for thermal drift of the sample. Piezoelectric creep can also be a problem, so the microscope often needs time to settle after large movements before constant height imaging can be performed.

Constant height imaging can be advantageous for eliminating the possibility of feedback artifacts.[citation needed]

Probe tips

[edit]

The nature of an SPM probe tip depends entirely on the type of SPM being used. The combination of tip shape and topography of the sample make up a SPM image.[37][citation needed] However, certain characteristics are common to all, or at least most, SPMs.[citation needed]

Most importantly the probe must have a very sharp apex.[citation needed] The apex of the probe defines the resolution of the microscope, the sharper the probe the better the resolution. For atomic resolution imaging the probe must be terminated by a single atom.[citation needed]

For many cantilever based SPMs (e.g. AFM and MFM), the entire cantilever and integrated probe are fabricated by acid [etching],[38] usually from silicon nitride. Conducting probes, needed for STM and SCM among others, are usually constructed from platinum/iridium wire for ambient operations, or tungsten for UHV operation. Other materials such as gold are sometimes used either for sample specific reasons or if the SPM is to be combined with other experiments such as TERS. Platinum/iridium (and other ambient) probes are normally cut using sharp wire cutters, the optimal method is to cut most of the way through the wire and then pull to snap the last of the wire, increasing the likelihood of a single atom termination. Tungsten wires are usually electrochemically etched, following this the oxide layer normally needs to be removed once the tip is in UHV conditions.

It is not uncommon for SPM probes (both purchased and "home-made") to not image with the desired resolution. This could be a tip which is too blunt or the probe may have more than one peak, resulting in a doubled or ghost image. For some probes, in situ modification of the tip apex is possible, this is usually done by either crashing the tip into the surface or by applying a large electric field. The latter is achieved by applying a bias voltage (of order 10V) between the tip and the sample, as this distance is usually 1-3 Angstroms, a very large field is generated.

The additional attachment of a quantum dot to the tip apex of a conductive probe enables surface potential imaging with high lateral resolution, scanning quantum dot microscopy.

Advantages

[edit]

The resolution of the microscopes is not limited by diffraction, only by the size of the probe-sample interaction volume (i.e., point spread function), which can be as small as a few picometres. Hence the ability to measure small local differences in object height (like that of 135 picometre steps on <100> silicon) is unparalleled. Laterally the probe-sample interaction extends only across the tip atom or atoms involved in the interaction.

The interaction can be used to modify the sample to create small structures (Scanning probe lithography).

Unlike electron microscope methods, specimens do not require a partial vacuum but can be observed in air at standard temperature and pressure or while submerged in a liquid reaction vessel.

Disadvantages

[edit]

The detailed shape of the scanning tip is sometimes difficult to determine. Its effect on the resulting data is particularly noticeable if the specimen varies greatly in height over lateral distances of 10 nm or less.

The scanning techniques are generally slower in acquiring images, due to the scanning process. As a result, efforts are being made to greatly improve the scanning rate. Like all scanning techniques, the embedding of spatial information into a time sequence opens the door to uncertainties in metrology, say of lateral spacings and angles, which arise due to time-domain effects like specimen drift, feedback loop oscillation, and mechanical vibration.

The maximum image size is generally smaller.

Scanning probe microscopy is often not useful for examining buried solid-solid or liquid-liquid interfaces.

Scanning photo current microscopy (SPCM)

[edit]

SPCM can be considered as a member of the Scanning Probe Microscopy (SPM) family. The difference between other SPM techniques and SPCM is, it exploits a focused laser beam as the local excitation source instead of a probe tip.[39]

Characterization and analysis of spatially resolved optical behavior of materials is very important in opto-electronic industry. Simply this involves studying how the properties of a material vary across its surface or bulk structure. Techniques that enable spatially resolved optoelectronic measurements provide valuable insights for the enhancement of optical performance. Scanning electron microscopy (SPCM) has emerged as a powerful technique which can investigate spatially resolved optoelectronic properties in semiconductor nano structures.

Principle

[edit]
Laser scan of the scanning photocurrent microscope

In SPCM, a focused laser beam is used to excite the semiconducting material producing excitons (electro-hole pairs). These excitons undergo different mechanisms and if they can reach the nearby electrodes before the recombination takes place a photocurrent is generated. This photocurrent is position dependent as it, raster scans the device.

SPCM analysis

[edit]

Using the position dependent photocurrent map, important photocurrent dynamics can be analyzed.

SPCM provides information such as characteristic length such as minority diffusion length, recombination dynamics, doping concentration, internal electric field  etc.

Visualization and analysis software

[edit]

In all instances and contrary to optical microscopes, rendering software is necessary to produce images. Such software is produced and embedded by instrument manufacturers but also available as an accessory from specialized work groups or companies. The main packages used are freeware: Gwyddion, WSxM (developed by Nanotec) and commercial: SPIP (developed by Image Metrology), FemtoScan Online (developed by Advanced Technologies Center), MountainsMap SPM (developed by Digital Surf), TopoStitch (developed by Image Metrology).

References

[edit]
  1. ^ Salapaka SM, Salapaka MV (2008). "Scanning Probe Microscopy". IEEE Control Systems Magazine. 28 (2): 65–83. doi:10.1109/MCS.2007.914688. ISSN 0272-1708. S2CID 20484280.
  2. ^ Binnig G, Quate CF, Gerber C (March 1986). "Atomic force microscope". Physical Review Letters. 56 (9): 930–933. Bibcode:1986PhRvL..56..930B. doi:10.1103/PhysRevLett.56.930. PMID 10033323.
  3. ^ Zhang L, Sakai T, Sakuma N, Ono T, Nakayama K (1999). "Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy". Applied Physics Letters. 75 (22): 3527–3529. Bibcode:1999ApPhL..75.3527Z. doi:10.1063/1.125377.
  4. ^ Weaver JM, Abraham DW (1991). "High resolution atomic force microscopy potentiometry". Journal of Vacuum Science and Technology B. 9 (3): 1559–1561. Bibcode:1991JVSTB...9.1559W. doi:10.1116/1.585423.
  5. ^ Nonnenmacher M, O'Boyle MP, Wickramasinghe HK (1991). "Kelvin probe force microscopy". Applied Physics Letters. 58 (25): 2921–2923. Bibcode:1991ApPhL..58.2921N. doi:10.1063/1.105227.
  6. ^ Hartmann U (1988). "Magnetic force microscopy: Some remarks from the micromagnetic point of view". Journal of Applied Physics. 64 (3): 1561–1564. Bibcode:1988JAP....64.1561H. doi:10.1063/1.341836.
  7. ^ Roelofs A, B?ttger U, Waser R, Schlaphof F, Trogisch S, Eng LM (2000). "Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy". Applied Physics Letters. 77 (21): 3444–3446. Bibcode:2000ApPhL..77.3444R. doi:10.1063/1.1328049.
  8. ^ Matey JR, Blanc J (1985). "Scanning capacitance microscopy". Journal of Applied Physics. 57 (5): 1437–1444. Bibcode:1985JAP....57.1437M. doi:10.1063/1.334506.
  9. ^ Eriksson MA, Beck RG, Topinka M, Katine JA, Westervelt RM, Campman KL, et al. (July 29, 1996). "Cryogenic scanning probe characterization of semiconductor nanostructures". Applied Physics Letters. 69 (5): 671–673. Bibcode:1996ApPhL..69..671E. doi:10.1063/1.117801.
  10. ^ Wagner C, Green MF, Leinen P, Deilmann T, Krüger P, Rohlfing M, et al. (July 2015). "Scanning Quantum Dot Microscopy". Physical Review Letters. 115 (2): 026101. arXiv:1503.07738. Bibcode:2015PhRvL.115b6101W. doi:10.1103/PhysRevLett.115.026101. PMID 26207484. S2CID 1720328.
  11. ^ Trenkler T, De Wolf P, Vandervorst W, Hellemans L (1998). "Nanopotentiometry: Local potential measurements in complementary metal--oxide--semiconductor transistors using atomic force microscopy". Journal of Vacuum Science and Technology B. 16 (1): 367–372. Bibcode:1998JVSTB..16..367T. doi:10.1116/1.589812.
  12. ^ Fritz M, Radmacher M, Petersen N, Gaub HE (May 1994). "Visualization and identification of intracellular structures by force modulation microscopy and drug induced degradation". The 1993 international conference on scanning tunneling microscopy. The 1993 international conference on scanning tunneling microscopy. Vol. 12. Beijing, China: AVS. pp. 1526–1529. Bibcode:1994JVSTB..12.1526F. doi:10.1116/1.587278. Archived from the original on March 5, 2016. Retrieved October 5, 2009.
  13. ^ Luria J, Kutes Y, Moore A, Zhang L, Stach EA, Huey BD (September 26, 2016). "Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy". Nature Energy. 1 (11): 16150. Bibcode:2016NatEn...116150L. doi:10.1038/nenergy.2016.150. ISSN 2058-7546. OSTI 1361263. S2CID 138664678.
  14. ^ Steffes JJ, Ristau RA, Ramesh R, Huey BD (February 2019). "Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy". Proceedings of the National Academy of Sciences of the United States of America. 116 (7): 2413–2418. Bibcode:2019PNAS..116.2413S. doi:10.1073/pnas.1806074116. PMC 6377454. PMID 30683718.
  15. ^ Song J, Zhou Y, Huey BD (February 2021). "3D structure–property correlations of electronic and energy materials by tomographic atomic force microscopy". Applied Physics Letters. 118 (8). Bibcode:2021ApPhL.118h0501S. doi:10.1063/5.0040984. S2CID 233931111. Retrieved March 11, 2024.
  16. ^ Binnig G, Rohrer H, Gerber C, Weibel E (1982). "Tunneling through a controllable vacuum gap". Applied Physics Letters. 40 (2): 178–180. Bibcode:1982ApPhL..40..178B. doi:10.1063/1.92999.
  17. ^ Kaiser WJ, Bell LD (April 1988). "Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy". Physical Review Letters. 60 (14): 1406–1409. Bibcode:1988PhRvL..60.1406K. doi:10.1103/PhysRevLett.60.1406. PMID 10038030.
  18. ^ Higgins SR, Hamers RJ (March 1996). "Morphology and dissolution processes of metal sulfide minerals observed with the electrochemical scanning tunneling microscope". Journal of Vacuum Science and Technology B. 14 (2). AVS: 1360–1364. Bibcode:1996JVSTB..14.1360H. doi:10.1116/1.589098. Archived from the original on March 5, 2016. Retrieved October 5, 2009.
  19. ^ Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, et al. (1992). "Scanning Hall probe microscopy". Applied Physics Letters. 61 (16): 1974–1976. Bibcode:1992ApPhL..61.1974C. doi:10.1063/1.108334. S2CID 121741603.
  20. ^ Wiesendanger R, Bode M (July 25, 2001). "Nano- and atomic-scale magnetism studied by spin-polarized scanning tunneling microscopy and spectroscopy". Solid State Communications. 119 (4–5): 341–355. Bibcode:2001SSCom.119..341W. doi:10.1016/S0038-1098(01)00103-X. ISSN 0038-1098.
  21. ^ Reddick RC, Warmack RJ, Ferrell TL (January 1989). "New form of scanning optical microscopy". Physical Review B. 39 (1): 767–770. Bibcode:1989PhRvB..39..767R. doi:10.1103/PhysRevB.39.767. PMID 9947227.
  22. ^ Vorlesungsskript Physikalische Elektronik und Messtechnik (in German)
  23. ^ Volker R, Freeland JF, Streiffer SK (2011). "New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy". In Kalinin, Sergei V., Gruverman, Alexei (eds.). Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy (1st ed.). New York: Springer. pp. 405–431. doi:10.1007/978-1-4419-7167-8_14. ISBN 978-1-4419-6567-7.
  24. ^ Hansma PK, Drake B, Marti O, Gould SA, Prater CB (February 1989). "The scanning ion-conductance microscope". Science. 243 (4891): 641–643. Bibcode:1989Sci...243..641H. doi:10.1126/science.2464851. PMID 2464851.
  25. ^ Meister A, Gabi M, Behr P, Studer P, V?r?s J, Niedermann P, et al. (June 2009). "FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond". Nano Letters. 9 (6): 2501–2507. Bibcode:2009NanoL...9.2501M. doi:10.1021/nl901384x. PMID 19453133.
  26. ^ Sidles JA, Garbini JL, Bruland KJ, Rugar D, Züger O, Hoen S, et al. (1995). "Magnetic resonance force microscopy". Reviews of Modern Physics. 67 (1): 249–265. Bibcode:1995RvMP...67..249S. doi:10.1103/RevModPhys.67.249.
  27. ^ Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (March 1991). "Breaking the diffraction barrier: optical microscopy on a nanometric scale". Science. 251 (5000): 1468–1470. Bibcode:1991Sci...251.1468B. doi:10.1126/science.251.5000.1468. PMID 17779440. S2CID 6906302.
  28. ^ Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R (August 2012). "Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution". Nano Letters. 12 (8): 3973–3978. Bibcode:2012NanoL..12.3973H. doi:10.1021/nl301159v. PMID 22703339.
  29. ^ De Wolf P, Snauwaert J, Clarysse T, Vandervorst W, Hellemans L (1995). "Characterization of a point-contact on silicon using force microscopy-supported resistance measurements". Applied Physics Letters. 66 (12): 1530–1532. Bibcode:1995ApPhL..66.1530D. doi:10.1063/1.113636.
  30. ^ Xu JB, Lauger L, Dransfeld K, Wilson IH (1994). "Thermal sensors for investigation of heat transfer in scanning probe microscopy". Review of Scientific Instruments. 65 (7): 2262–2266. Bibcode:1994RScI...65.2262X. doi:10.1063/1.1145225.
  31. ^ Yoo MJ, Fulton TA, Hess HF, Willett RL, Dunkleberger LN, Chichester RJ, et al. (April 1997). "Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges". Science. 276 (5312): 579–582. doi:10.1126/science.276.5312.579. PMID 9110974.
  32. ^ Nasr Esfahani E, Eshghinejad A, Ou Y, Zhao J, Adler S, Li J (November 2017). "Scanning Thermo-Ionic Microscopy: Probing Nanoscale Electrochemistry via Thermal Stress-Induced Oscillation". Microscopy Today. 25 (6): 12–19. arXiv:1703.06184. doi:10.1017/s1551929517001043. ISSN 1551-9295. S2CID 119463679.
  33. ^ Eshghinejad A, Nasr Esfahani E, Wang P, Xie S, Geary TC, Adler SB, et al. (May 28, 2016). "Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale". Journal of Applied Physics. 119 (20): 205110. Bibcode:2016JAP...119t5110E. doi:10.1063/1.4949473. ISSN 0021-8979. S2CID 7415218.
  34. ^ Hong S, Tong S, Park WI, Hiranaga Y, Cho Y, Roelofs A (May 2014). "Charge gradient microscopy". Proceedings of the National Academy of Sciences of the United States of America. 111 (18): 6566–6569. Bibcode:2014PNAS..111.6566H. doi:10.1073/pnas.1324178111. PMC 4020115. PMID 24760831.
  35. ^ Esfahani EN, Liu X, Li J (2017). "Imaging ferroelectric domains via charge gradient microscopy enhanced by principal component analysis". Journal of Materiomics. 3 (4): 280–285. arXiv:1706.02345. doi:10.1016/j.jmat.2017.07.001. S2CID 118953680.
  36. ^ Park H, Jung J, Min DK, Kim S, Hong S, Shin H (March 2, 2004). "Scanning resistive probe microscopy: Imaging ferroelectric domains". Applied Physics Letters. 84 (10): 1734–1736. Bibcode:2004ApPhL..84.1734P. doi:10.1063/1.1667266. ISSN 0003-6951.
  37. ^ Bottomley LA (May 19, 1998). "Scanning Probe Microscopy". Analytical Chemistry. 70 (12): 425–476. doi:10.1021/a1980011o.
  38. ^ Akamine S, Barrett RC, Quate CF (1990). "Improved atomic force microscope images using microcantilevers with sharp tips". Applied Physics Letters. 57 (3): 316–318. Bibcode:1990ApPhL..57..316A. doi:10.1063/1.103677.
  39. ^ GRAHAM R, YU D (September 23, 2013). "Scanning Photocurrent Microscopy in Semiconductor Nanostructures". Modern Physics Letters B. 27 (25): 1330018. Bibcode:2013MPLB...2730018G. doi:10.1142/s0217984913300184. ISSN 0217-9849.

Further reading

[edit]
[edit]
香菜炒什么好吃 鹿茸是什么 鹤膝风是什么病 猫咪冠状病毒什么症状 过敏了吃什么药好
手心红是什么原因 蝉的鸣叫声像什么 点痦子去医院挂什么科 孕酮低跟什么有关系 莱猪是什么
水土不服是什么意思 筑基期后面是什么 龙蛇混杂是什么意思 tvb为什么演员都走了 祈福什么意思
数位板是什么 水瓶座是什么性格 边沿是什么意思 右眼皮跳是什么预兆 拉屎出血是什么原因
alcon是什么牌子hcv8jop4ns2r.cn 非甾体抗炎药是什么意思hcv9jop3ns3r.cn 水红色是什么颜色hcv8jop6ns3r.cn 不食人间烟火是什么意思hcv7jop6ns0r.cn 奇异果是什么水果hcv8jop6ns8r.cn
晚上剪指甲有什么禁忌gysmod.com 小学什么时候期末考试hcv9jop0ns9r.cn 头晕目赤是什么意思hcv9jop0ns5r.cn 嗓子哑是什么原因引起的cl108k.com rf医学上是什么意思hcv9jop0ns0r.cn
西梅不能和什么一起吃sanhestory.com 螨虫咬了是什么样子hcv8jop8ns7r.cn 十年粤语版叫什么名字hcv8jop9ns4r.cn c02是什么意思hcv8jop3ns0r.cn 前庭功能障碍是什么病hcv9jop3ns1r.cn
欧了是什么意思hcv9jop7ns5r.cn 喝菊花茶有什么功效liaochangning.com hp代表什么意思hcv9jop3ns6r.cn 酸梅汤不适合什么人喝hcv9jop4ns7r.cn 三七粉有什么作用hcv8jop1ns5r.cn
百度