终结者是什么意思| 上天眷顾是什么意思| 早餐吃什么最减肥瘦身| 相对密度是什么意思| 花五行属什么| 口红是用什么做的| 白腊金是什么意思| 内分泌失调什么症状| 塔罗是什么意思| 颈椎轻度退行性变是什么意思| 胎停会有什么症状| 羊水透声欠佳什么意思| 牛仔裙配什么上衣好看| 蛇肉吃了有什么好处| 边鱼是什么鱼| 圣女是什么意思| 眼震电图能查什么病| 绮丽的什么| 总是拉稀是什么原因| 蜗牛是什么动物| 达泊西汀是什么药| 繁什么似锦| kappa是什么牌子| 吃什么食物快速降糖| 吃了西瓜不能吃什么| 天津有什么玩的| 牙龈肿痛用什么药好得快| 头晕呕吐吃什么药| 九条鱼代表什么意思| 安乃近是什么药| 车抛锚是什么意思| 小狗感冒症状是什么样的| exchange是什么意思| 法国货币叫什么| 肛周瘙痒是什么原因| 丛林之王是什么动物| 肝功能不全是什么意思| 实属什么意思| 9月28号什么星座| 曲水流觞是什么意思| 11月20号是什么星座| 加拿大货币叫什么| 11.18是什么星座| 口若悬河是什么意思| 什么的眼光| 狗狗湿疹用什么药膏最有效| 鳄鱼属于什么动物| 斯字五行属什么| 9月28是什么星座| 没学历可以学什么技术| 1998属什么生肖| 佛家思想的核心是什么| 内角是什么意思| 维c吃多了有什么副作用| 南乳是什么| 胆量是什么意思| 上行下效是什么意思| AX是什么意思| 声音嘶哑吃什么药好| 三百年前是什么朝代| 11月份是什么星座| 尿胆红素阳性是什么意思| 星期一左眼皮跳是什么预兆| 寒包火感冒吃什么药| 副主任医师什么级别| 后宫是什么意思| 冲床工是做什么的| 跳蚤吃什么| 强的松又叫什么名字| 尿急吃什么药效果最好| 复学需要什么手续| 芡实是什么| 什么睡姿有助于丰胸| 什么叫非甾体抗炎药| 血热吃什么药快速见效| 免疫组化是什么意思| 手指麻是什么原因| 肺结核传染途径是什么| 吃鹅蛋有什么好处| 中医治未病是什么意思| 三分三是什么药| 萩是什么意思| 什么减肥药好使| 胃气上逆是什么原因造成的| 什么方法可以快速排便| 喊6个1是什么意思| 肾虚是什么原因引起的| 什么样的情况下会怀孕| 甲状腺发炎有什么症状| 什么动物| 眼底照相是检查什么| 秋高气爽是什么意思| 顾名思义什么意思| 苯甲酸钠是什么| 混剪是什么意思| 却的偏旁叫什么| 09年的牛是什么命| 龙骨是什么骨头| 孕妇吃红薯对胎儿有什么好处| 淋巴结有什么症状| 梦见牙套掉了是什么意思| 骨肉瘤是什么病| 专科什么意思| 本性难移是什么生肖| 焦虑挂什么科| 英语一和英语二有什么区别| 寡糖是什么| 什么飞什么跳| 带状疱疹吃什么药| 黄忠字什么| 端午节吃什么菜呢| 什么是签注| 行货是什么意思| 一枚什么| 什么叫做原发性高血压| 头疼需要做什么检查| lynn是什么意思| 农家一碗香是什么菜| 梦到黑狗是什么意思| 胆结石不能吃什么食物| 五彩斑斓的意思是什么| 什么人适合吃人参| 半月板后角变性什么意思| 高血压会引起什么并发症| 蒲公英和什么一起泡水喝最好| 脚背肿是什么原因| 和硕是什么意思| 感冒是挂什么科| 血脂高吃什么食物好| 左肾钙乳症是什么病| 诙谐幽默是什么意思| f代表什么| 甲肝是什么病| 白细胞低说明什么| 佛口蛇心是什么生肖| 你代表什么意思| 水晶眼镜对眼睛有什么好处| 汪峰是什么星座| 兰州人为什么要戴头巾| 壁厚是什么意思| 螃蟹吃什么东西| 劲旅是什么意思| 潘驴邓小闲是什么意思| 攒是什么意思| 姑姑的女儿叫什么| 什么是腺样体肥大| 单独玉米粉能做什么| 上网是什么意思| 续弦是什么意思| 婴儿打嗝是什么原因引起的| 1962年五行属什么| 梦见吃粉条是什么预兆| 小姐姐是什么意思| cm和mm有什么区别| 牙龈肿胀吃什么药| 江郎才尽是什么意思| 带id是什么意思| 电场是什么| 菠菜什么季节吃| 肾虚是什么原因| 于是什么意思| 恩怨是什么意思| 树上长的像灵芝的是什么| 每天早上喝一杯蜂蜜水有什么好处| 田七和三七有什么区别| 检察长什么级别| 美元长什么样子图片| 肚脐右边疼是什么原因| 曹操属什么| 为什么会拉稀| 肉碱是什么| lhrh是什么激素| 过期的牛奶有什么用| 什么水果补铁| 血压低头晕吃什么药| 什么是着相| unny是什么牌子| 发挥是什么意思| 庚午日五行属什么| 太原有什么特产| 舌头上长泡是什么原因| 智齿是什么意思| 天外飞仙是什么意思| avg什么意思| 感冒了吃什么水果| 4月15号是什么星座| 红海为什么叫红海| 有什么聚会玩的游戏| 总是心慌是什么原因| 放臭屁是什么原因| 川字加一横是什么字| 长期湿热会引起什么病| 双子座和什么座最不配| 玫瑰代表什么| 河豚吃什么食物| 失眠看什么科| 什么是辣木籽| 囊肿是什么| 荔枝和什么吃会中毒| 舌苔发青是什么原因| cefiro是什么品牌| 拂是什么生肖| 舌根苔白厚腻是什么原因| 微白蛋白高是什么情况| 念珠菌阳性是什么病| 西米是用什么做的| 纳差是什么意思| 有胃病的人吃什么最养胃| 高什么远什么| 什么叫多囊| 吃什么治疗便秘| 5w是什么意思| 高专是什么| 感冒头疼吃什么药好| 紧急避孕药什么时候吃最好| 122是什么号码| 青红皂白的皂是什么颜色| 独角仙长什么样| 黄油是用什么做的| 霸王别姬是什么意思| 垚字是什么意思| 面霜是干什么用的| falcon是什么牌子| 怀孕小肚子疼是什么原因| 膈应什么意思| 气虚血瘀吃什么中成药| 头发油是什么原因| 波比跳是什么| 乙肝表面抗体高是什么意思| 什么叫阳性| 小孩胃疼吃什么药好| 什么人容易得癌症| 梦见刨红薯是什么意思| 扁桃体炎吃什么药最好效果好| 直肠炎是什么原因引起的| 防晒衣什么材质最防晒| 醋泡脚有什么好处| 思量是什么意思| 书中自有颜如玉什么意思| crp偏高说明什么| 什么补铁| 呼和浩特有什么特产| 左旋肉碱什么时候吃| 梅毒螺旋体抗体阴性是什么意思| 娃娃鱼吃什么食物| 乙肝两对半定量是什么意思| 熊猫为什么叫熊猫| 空降是什么意思| 胆管炎吃什么药| 血红蛋白低是什么原因| 浇花的水壶叫什么| 好难过这不是我要的结果什么歌| 女人吃猪肝有什么好处| 反吟是什么意思| 宫颈hsil是什么意思| 吃了龙虾后不能吃什么| 气性坏疽是什么病| 荨麻疹可以吃什么食物| 未成年喝酒有什么危害| 什么汤养胃| 女左上眼皮跳是什么预兆| 反应蛋白偏高说明什么| 秦始皇为什么要焚书坑儒| 验血糖挂什么科| 百度Jump to content

全国两会上的海南声音--人民网海南频道--人民网

From Wikipedia, the free encyclopedia
百度 新房价格环比上涨%,同比上涨%,从济南房价走势来看,济南新房价格在两年内基本翻番,尤其是2017年更是高歌猛进,涨势不少。

Symmetry of a 5×5 matrix

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

Because equal matrices have equal dimensions, only square matrices can be symmetric.

The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if denotes the entry in the th row and th column then

for all indices and

Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.

In linear algebra, a real symmetric matrix represents a self-adjoint operator[1] represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.

Example

[edit]

The following matrix is symmetric: Since .

Properties

[edit]

Basic properties

[edit]
  • The sum and difference of two symmetric matrices is symmetric.
  • This is not always true for the product: given symmetric matrices and , then is symmetric if and only if and commute, i.e., if .
  • For any integer , is symmetric if is symmetric.
  • Rank of a symmetric matrix is equal to the number of non-zero eigenvalues of .

Decomposition into symmetric and skew-symmetric

[edit]

Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let denote the space of matrices. If denotes the space of symmetric matrices and the space of skew-symmetric matrices then and , i.e. where denotes the direct sum. Let then

Notice that and . This is true for every square matrix with entries from any field whose characteristic is different from 2.

A symmetric matrix is determined by scalars (the number of entries on or above the main diagonal). Similarly, a skew-symmetric matrix is determined by scalars (the number of entries above the main diagonal).

Matrix congruent to a symmetric matrix

[edit]

Any matrix congruent to a symmetric matrix is again symmetric: if is a symmetric matrix, then so is for any matrix .

Symmetry implies normality

[edit]

A (real-valued) symmetric matrix is necessarily a normal matrix.

Real symmetric matrices

[edit]

Denote by the standard inner product on . The real matrix is symmetric if and only if

Since this definition is independent of the choice of basis, symmetry is a property that depends only on the linear operator A and a choice of inner product. This characterization of symmetry is useful, for example, in differential geometry, for each tangent space to a manifold may be endowed with an inner product, giving rise to what is called a Riemannian manifold. Another area where this formulation is used is in Hilbert spaces.

The finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix. More explicitly: For every real symmetric matrix there exists a real orthogonal matrix such that is a diagonal matrix. Every real symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix.

If and are real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:[2] there exists a basis of such that every element of the basis is an eigenvector for both and .

Every real symmetric matrix is Hermitian, and therefore all its eigenvalues are real. (In fact, the eigenvalues are the entries in the diagonal matrix (above), and therefore is uniquely determined by up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices.

Complex symmetric matrices

[edit]

A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries. This result is referred to as the Autonne–Takagi factorization. It was originally proved by Léon Autonne (1915) and Teiji Takagi (1925) and rediscovered with different proofs by several other mathematicians.[3][4] In fact, the matrix is Hermitian and positive semi-definite, so there is a unitary matrix such that is diagonal with non-negative real entries. Thus is complex symmetric with real. Writing with and real symmetric matrices, . Thus . Since and commute, there is a real orthogonal matrix such that both and are diagonal. Setting (a unitary matrix), the matrix is complex diagonal. Pre-multiplying by a suitable diagonal unitary matrix (which preserves unitarity of ), the diagonal entries of can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as . The matrix we seek is simply given by . Clearly as desired, so we make the modification . Since their squares are the eigenvalues of , they coincide with the singular values of . (Note, about the eigen-decomposition of a complex symmetric matrix , the Jordan normal form of may not be diagonal, therefore may not be diagonalized by any similarity transformation.)

Decomposition

[edit]

Using the Jordan normal form, one can prove that every square real matrix can be written as a product of two real symmetric matrices, and every square complex matrix can be written as a product of two complex symmetric matrices.[5]

Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely.

Cholesky decomposition states that every real positive-definite symmetric matrix is a product of a lower-triangular matrix and its transpose,

If the matrix is symmetric indefinite, it may be still decomposed as where is a permutation matrix (arising from the need to pivot), a lower unit triangular matrix, and is a direct sum of symmetric and blocks, which is called Bunch–Kaufman decomposition [6]

A general (complex) symmetric matrix may be defective and thus not be diagonalizable. If is diagonalizable it may be decomposed as where is an orthogonal matrix , and is a diagonal matrix of the eigenvalues of . In the special case that is real symmetric, then and are also real. To see orthogonality, suppose and are eigenvectors corresponding to distinct eigenvalues , . Then

Since and are distinct, we have .

Hessian

[edit]

Symmetric matrices of real functions appear as the Hessians of twice differentiable functions of real variables (the continuity of the second derivative is not needed, despite common belief to the opposite[7]).

Every quadratic form on can be uniquely written in the form with a symmetric matrix . Because of the above spectral theorem, one can then say that every quadratic form, up to the choice of an orthonormal basis of , "looks like" with real numbers . This considerably simplifies the study of quadratic forms, as well as the study of the level sets which are generalizations of conic sections.

This is important partly because the second-order behavior of every smooth multi-variable function is described by the quadratic form belonging to the function's Hessian; this is a consequence of Taylor's theorem.

Symmetrizable matrix

[edit]

An matrix is said to be symmetrizable if there exists an invertible diagonal matrix and symmetric matrix such that

The transpose of a symmetrizable matrix is symmetrizable, since and is symmetric. A matrix is symmetrizable if and only if the following conditions are met:

  1. implies for all
  2. for any finite sequence

See also

[edit]

Other types of symmetry or pattern in square matrices have special names; see for example:

See also symmetry in mathematics.

Notes

[edit]
  1. ^ Jesús Rojo García (1986). álgebra lineal (in Spanish) (2nd ed.). Editorial AC. ISBN 84-7288-120-2.
  2. ^ Bellman, Richard (1997). Introduction to Matrix Analysis (2nd ed.). SIAM. ISBN 08-9871-399-4.
  3. ^ Horn & Johnson 2013, pp. 263, 278
  4. ^ See:
  5. ^ Bosch, A. J. (1986). "The factorization of a square matrix into two symmetric matrices". American Mathematical Monthly. 93 (6): 462–464. doi:10.2307/2323471. JSTOR 2323471.
  6. ^ Golub, G.H.; van Loan, C.F. (1996). Matrix Computations. Johns Hopkins University Press. ISBN 0-8018-5413-X. OCLC 34515797.
  7. ^ Dieudonné, Jean A. (1969). "Theorem (8.12.2)". Foundations of Modern Analysis. Academic Press. p. 180. ISBN 0-12-215550-5. OCLC 576465.

References

[edit]
  • Horn, Roger A.; Johnson, Charles R. (2013), Matrix analysis (2nd ed.), Cambridge University Press, ISBN 978-0-521-54823-6
[edit]
陈百强属什么生肖 百香果有什么作用 猫咪踩奶是什么意思 早上流鼻血是什么原因 摩羯座女和什么座最配
使婢差奴过一生是什么意思 苎麻是什么面料 石几念什么 梦见穿袜子是什么意思 cpu是什么意思
3月是什么星座的 红虾是什么虾 昔日是什么意思 没有什么了不起 局限是什么意思
妈妈是什么意思呢 人大代表是什么 浑身疼痛什么原因 什么叫实性结节 普洱茶是属于什么茶
合胞病毒是什么hcv8jop4ns9r.cn 70年的狗是什么命aiwuzhiyu.com 女人吃什么新陈代谢快hcv8jop6ns7r.cn 煮黑豆吃有什么功效dayuxmw.com 梅毒rpr是什么hcv9jop0ns9r.cn
赛诺菲是什么药hcv8jop0ns7r.cn 越南讲什么语言hcv8jop4ns1r.cn 三月三十号是什么星座hcv9jop2ns4r.cn 哈密瓜为什么叫哈密瓜jasonfriends.com 免疫五项能查出什么病hcv9jop4ns4r.cn
纯色是什么颜色hcv9jop4ns3r.cn 荔枝为什么上火hcv8jop7ns9r.cn 什么品种的榴莲最好吃hcv9jop2ns3r.cn 桑叶泡水喝有什么功效hcv8jop8ns1r.cn 四肢无力吃什么药hcv9jop3ns4r.cn
搞基什么意思hcv9jop1ns1r.cn 圣诞节送孩子什么礼物好hcv8jop0ns2r.cn 思维敏捷是什么意思hcv8jop2ns8r.cn 草代表什么生肖hcv8jop1ns2r.cn 合拢是什么意思gangsutong.com
百度