床上放什么可以驱虫| 茱萸是什么东西| 日本打工需要什么条件| 吃什么能让头发变黑| 帽子戏法是什么意思| dd什么意思| pgr是什么意思| 肌瘤是什么| 手背出汗是什么原因| 凭什么是什么意思| 武警支队是什么级别| 梦见鞋丢了是什么意思| 肩周炎是什么引起的| 结节性硬化症是什么病| 女性尿道口有小疙瘩是什么原因| 虾吃什么食物| 千秋无绝色悦目是佳人什么意思| HlV是什么| 屁特别多是什么原因| 冥冥之中是什么意思| 中国科协是什么级别| 胎心不稳定是什么原因| 午睡后头疼是什么原因| 国防科技大学毕业是什么军衔| 做梦代表什么生肖| 崩溃是什么意思| 盯眝是什么意思| 孕妇抽筋是什么原因引起的| u型枕有什么作用| 黄酮是什么| refill是什么意思| 为什么会拉血| 小孩肺热吃什么好清肺热| 欣字取名什么寓意| 半夜脚抽筋是什么原因| 拔牙能吃什么| 胆囊炎吃什么药| 糖是什么意思| 肤色暗黄适合穿什么颜色的衣服| trance什么意思| 什么游戏赚钱| 什么人适合吃蛋白质粉| 偏头痛是什么| 俄罗斯特工组织叫什么| cyan是什么颜色| 宫颈欠光滑是什么意思| 女人耳垂大厚代表什么| 什么是新鲜感| 一般细菌培养及鉴定是检查什么| 西席是什么意思| 乙肝看什么指标| wonderful什么意思| 什么的拳头| 吃菠萝蜜有什么好处| 五一年属什么生肖| 羸弱什么意思| 尿里面有血是什么原因| 腿肿吃什么药| 东方不败练的什么武功| 7月16号是什么星座| 经常想睡觉是什么原因| 后脑勺发胀是什么原因| 投放是什么意思| 五爷是什么菩萨| 非分之想是什么意思| 大疱性皮肤病是什么病| vr眼镜是什么| 咽喉干燥是什么原因| 双侧颈部淋巴结可见是什么意思| 手背上有痣代表什么| 睡眠不好吃什么药最有效| 皮肤黑的人穿什么颜色的衣服好看| 为什么会无缘无故长痣| 供观音菩萨有什么讲究| 高育良什么级别| 宫商角徵羽是什么意思| 对戒是什么意思| 黄菡和黄澜什么关系| 大腿内侧是什么经络| 检查头部挂什么科室| 三月八号什么星座| 婴儿口水多是什么原因| 杞人忧天告诉我们什么道理| 升血小板吃什么药| 樟脑丸是干什么的| 爱意是什么意思| 左传是一部什么体史书| 女儿茶属于什么茶| 英雄难过美人关是什么意思| none是什么意思| 吃什么能降尿蛋白| 娘是什么意思| Q什么意思| 骨癌的前兆是什么症状| 磊字五行属什么| 贫血吃什么水果好| 什么的水| 吃什么不会便秘| da是什么意思| 乙肝不能吃什么东西| 指甲表面凹凸不平是什么原因| 丁丁是什么意思| 补充胶原蛋白吃什么最好| 新股配号数量是什么意思| 泌尿科挂什么科| 鼻炎咳嗽吃什么药| 爱出油的人身体缺什么| 什么是红斑狼疮病| 眼睛出现重影是什么原因| 什么精神成语| 今年23岁属什么生肖| 脚为什么会脱皮| 胃食管反流用什么药| 小确幸什么意思| 诡辩是什么意思| 什么叫化疗| 揉肚子有什么好处| 身心交瘁什么意思| 厅长是什么级别| 梦见换房子是什么预兆| 什么牌子的冰箱好用又省电| 拉肚子吃什么食物比较好| 人乳头瘤病毒感染是什么意思| 广东属于什么气候| 什么是同素异形体| 国家的实质是什么| 自缢是什么意思| 胆汁酸高吃什么降得快| 两千年前是什么朝代| 白脸代表什么| 高血压是什么原因引起的| 腋臭挂什么科| 狗狗发抖是什么原因| 99足银是什么意思| 指甲长出来是白色的什么原因| 齐人之福什么意思| 什么时候闰九月| 过敏性咳嗽用什么药效果好| 宝宝拉水便是什么原因| 肾亏吃什么好| 操是什么意思| 身份证有x代表什么| 为什么会得中耳炎| 佛跳墙是什么菜| mc是什么意思啊| 奶奶和孙女是什么关系| 金风送爽是什么意思| 脂膜炎是什么病严重吗| 尿潜血弱阳性是什么意思| 胆结石挂号挂什么科| 近亲结婚生的孩子会得什么病| 为什么加油站不能打电话| alike是什么意思| 耳朵后面长痘痘是什么原因| 封顶是什么意思| vmax什么意思| 老年斑用什么药膏可以去掉| 肉麻是什么意思| 齿痕舌吃什么中成药| 一个木一个西读什么| 等闲识得东风面什么意思| 吃榴莲对身体有什么好处| 胃不舒服吃什么水果| 6月份是什么季节| 黄瓜吃了有什么好处| 经常做梦是什么原因| 取环后应该注意什么| 干净的反义词是什么| 兔肉和什么相克| 神经性呕吐是什么症状| 幸灾乐祸什么意思| 卷饼卷什么菜好吃| 骨折吃什么药恢复快| 血清蛋白是什么| 大暑什么时候| 月经期头疼是什么原因| 西柚是什么水果| 土方是什么| 熊猫属于什么科动物| 11月25日是什么星座| 梦见苍蝇很多是什么意思| 金酒属于什么酒| 经常喝茶叶有什么好处| 头晕是什么症状引起的| iqc是什么意思| 尿是什么味道| 蒙圈什么意思| 266什么意思| 什么龟最贵| 痛风为什么要禁欲| 凤梨跟菠萝有什么区别| 绾色是什么颜色| 乳腺钙化灶是什么意思| 孕妇吃什么| 电视开不了机是什么原因| 人为什么会打喷嚏| 记性不好吃什么药| 今天是什么节气24节气| 甜不辣是什么| 夕阳红是什么意思| 猫有什么病会传染给人| 桃花什么生肖| 浑什么意思| 发改委是干什么的| 两票制指的是什么| 为什么佛山有三个车牌| 什么地诉说| 7月10日是什么星座| 周正是什么意思| 蜘蛛为什么不是昆虫| 鼻窦炎吃什么抗生素| 早上9点半是什么时辰| 什么叫丁克| 什么学步成语| 清创手术是什么意思| 脚为什么会痒越抓越痒| 什么是日记| 煲鸡汤放什么材料好| 玉化是什么意思| 金钱龟吃什么食物| 为什么喉咙经常痛| 脸颊两侧长痘痘什么原因| 金乐什么字| 外聘是什么意思| 身体铅超标有什么危害| 申时出生五行缺什么| 2021是什么年| 非萎缩性胃炎伴糜烂是什么意思| 土豆不能和什么一起吃| 兔肉和什么相克| 橡皮擦是什么材料做的| 脑梗塞吃什么食物好| k值是什么意思| 阴历六月是什么月| 秋收冬藏是什么生肖| 促狭一笑是什么意思| 什么时候吃苹果最好| 小孩说话不清楚挂什么科| elaine是什么意思| 脚老抽筋是什么原因| 玛卡和什么搭配壮阳效果最佳| 蟑螂对人体有什么危害| 身心健康是什么意思| 一什么苹果| 基质是什么| 遇难呈祥是什么生肖| 客厅沙发后面墙上挂什么画好| 足字旁的字与什么有关| 33朵玫瑰花代表什么意思| 左侧卵巢内囊性回声是什么意思| 四川的耗儿鱼是什么鱼| 3月30日什么星座| 十二指肠炎吃什么药| 不完全性右束支阻滞是什么意思| 什么是煞气| 不什么不| 抱怨是什么意思| 大年初一是什么生肖| 星期一左眼皮跳是什么预兆| 黄瓜又什么又什么| 青龙是什么| 农历五月的别称是什么| 英短蓝猫吃什么猫粮好| 智齿拔了有什么影响| 百度Jump to content

今春以来最强沙尘袭京 今日阵风七级局地或有扬沙(图)

From Wikipedia, the free encyclopedia
百度 乔治没有说明他指的是谁,他向我们提出这样一个问题:有这么个人,体貌不是很吸引人。

Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulates, and at present called axioms.

After the 17th-century introduction by René Descartes of the coordinate method, which was called analytic geometry, the term "synthetic geometry" was coined to refer to the older methods that were, before Descartes, the only known ones.

According to Felix Klein

Synthetic geometry is that which studies figures as such, without recourse to formulae, whereas analytic geometry consistently makes use of such formulae as can be written down after the adoption of an appropriate system of coordinates.[1]

The first systematic approach for synthetic geometry is Euclid's Elements. However, it appeared at the end of the 19th century that Euclid's postulates were not sufficient for characterizing geometry. The first complete axiom system for geometry was given only at the end of the 19th century by David Hilbert. At the same time, it appeared that both synthetic methods and analytic methods can be used to build geometry. The fact that the two approaches are equivalent has been proved by Emil Artin in his book Geometric Algebra.

Because of this equivalence, the distinction between synthetic and analytic geometry is no more in use, except at elementary level, or for geometries that are not related to any sort of numbers, such as some finite geometries and non-Desarguesian geometry.[citation needed]

Logical synthesis

[edit]

The process of logical synthesis begins with some arbitrary but definite starting point. This starting point is the introduction of primitive notions or primitives and axioms about these primitives:

  • Primitives are the most basic ideas. Typically they include both objects and relationships. In geometry, the objects are things such as points, lines and planes, while a fundamental relationship is that of incidence – of one object meeting or joining with another. The terms themselves are undefined. Hilbert once remarked that instead of points, lines and planes one might just as well talk of tables, chairs and beer mugs,[2] the point being that the primitive terms are just empty placeholders and have no intrinsic properties.
  • Axioms are statements about these primitives; for example, any two points are together incident with just one line (i.e. that for any two points, there is just one line which passes through both of them). Axioms are assumed true, and not proven. They are the building blocks of geometric concepts, since they specify the properties that the primitives have.

From a given set of axioms, synthesis proceeds as a carefully constructed logical argument. When a significant result is proved rigorously, it becomes a theorem.

Properties of axiom sets

[edit]

There is no fixed axiom set for geometry, as more than one consistent set can be chosen. Each such set may lead to a different geometry, while there are also examples of different sets giving the same geometry. With this plethora of possibilities, it is no longer appropriate to speak of "geometry" in the singular.

Historically, Euclid's parallel postulate has turned out to be independent of the other axioms. Simply discarding it gives absolute geometry, while negating it yields hyperbolic geometry. Other consistent axiom sets can yield other geometries, such as projective, elliptic, spherical or affine geometry.

Axioms of continuity and "betweenness" are also optional, for example, discrete geometries may be created by discarding or modifying them.

Following the Erlangen program of Klein, the nature of any given geometry can be seen as the connection between symmetry and the content of the propositions, rather than the style of development.

History

[edit]

Euclid's original treatment remained unchallenged for over two thousand years, until the simultaneous discoveries of the non-Euclidean geometries by Gauss, Bolyai, Lobachevsky and Riemann in the 19th century led mathematicians to question Euclid's underlying assumptions.[3]

One of the early French analysts summarized synthetic geometry this way:

The Elements of Euclid are treated by the synthetic method. This author, after having posed the axioms, and formed the requisites, established the propositions which he proves successively being supported by that which preceded, proceeding always from the simple to compound, which is the essential character of synthesis.[4]

The heyday of synthetic geometry can be considered to have been the 19th century, when analytic methods based on coordinates and calculus were ignored by some geometers such as Jakob Steiner, in favor of a purely synthetic development of projective geometry. For example, the treatment of the projective plane starting from axioms of incidence is actually a broader theory (with more models) than is found by starting with a vector space of dimension three. Projective geometry has in fact the simplest and most elegant synthetic expression of any geometry.[5]

In his Erlangen program, Felix Klein played down the tension between synthetic and analytic methods:

On the Antithesis between the Synthetic and the Analytic Method in Modern Geometry:
The distinction between modern synthesis and modern analytic geometry must no longer be regarded as essential, inasmuch as both subject-matter and methods of reasoning have gradually taken a similar form in both. We choose therefore in the text as common designation of them both the term projective geometry. Although the synthetic method has more to do with space-perception and thereby imparts a rare charm to its first simple developments, the realm of space-perception is nevertheless not closed to the analytic method, and the formulae of analytic geometry can be looked upon as a precise and perspicuous statement of geometrical relations. On the other hand, the advantage to original research of a well formulated analysis should not be underestimated, - an advantage due to its moving, so to speak, in advance of the thought. But it should always be insisted that a mathematical subject is not to be considered exhausted until it has become intuitively evident, and the progress made by the aid of analysis is only a first, though a very important, step.[6]

The close axiomatic study of Euclidean geometry led to the construction of the Lambert quadrilateral and the Saccheri quadrilateral. These structures introduced the field of non-Euclidean geometry where Euclid's parallel axiom is denied. Gauss, Bolyai and Lobachevski independently constructed hyperbolic geometry, where parallel lines have an angle of parallelism that depends on their separation. This study became widely accessible through the Poincaré disc model where motions are given by M?bius transformations. Similarly, Riemann, a student of Gauss's, constructed Riemannian geometry, of which elliptic geometry is a particular case.

Another example concerns inversive geometry as advanced by Ludwig Immanuel Magnus, which can be considered synthetic in spirit. The closely related operation of reciprocation expresses analysis of the plane.

Karl von Staudt showed that algebraic axioms, such as commutativity and associativity of addition and multiplication, were in fact consequences of incidence of lines in geometric configurations. David Hilbert showed[7] that the Desargues configuration played a special role. Further work was done by Ruth Moufang and her students. The concepts have been one of the motivators of incidence geometry.

When parallel lines are taken as primary, synthesis produces affine geometry. Though Euclidean geometry is both an affine and metric geometry, in general affine spaces may be missing a metric. The extra flexibility thus afforded makes affine geometry appropriate for the study of spacetime, as discussed in the history of affine geometry.

In 1955 Herbert Busemann and Paul J. Kelley sounded a nostalgic note for synthetic geometry:

Although reluctantly, geometers must admit that the beauty of synthetic geometry has lost its appeal for the new generation. The reasons are clear: not so long ago synthetic geometry was the only field in which the reasoning proceeded strictly from axioms, whereas this appeal — so fundamental to many mathematically interested people — is now made by many other fields.[5]

For example, college studies now include linear algebra, topology, and graph theory where the subject is developed from first principles, and propositions are deduced by elementary proofs. Expecting to replace synthetic with analytic geometry leads to loss of geometric content.[8]

Today's student of geometry has axioms other than Euclid's available: see Hilbert's axioms and Tarski's axioms.

Ernst K?tter published a (German) report in 1901 on "The development of synthetic geometry from Monge to Staudt (1847)";[9]

Proofs using synthetic geometry

[edit]

Synthetic proofs of geometric theorems make use of auxiliary constructs (such as helping lines) and concepts such as equality of sides or angles and similarity and congruence of triangles. Examples of such proofs can be found in the articles Butterfly theorem, Angle bisector theorem, Apollonius' theorem, British flag theorem, Ceva's theorem, Equal incircles theorem, Geometric mean theorem, Heron's formula, Isosceles triangle theorem, Law of cosines, and others that are linked to here.

Computational synthetic geometry

[edit]

In conjunction with computational geometry, a computational synthetic geometry has been founded, having close connection, for example, with matroid theory. Synthetic differential geometry is an application of topos theory to the foundations of differentiable manifold theory.

See also

[edit]

Notes

[edit]
  1. ^ Klein 1948, p. 55
  2. ^ Greenberg 1974, p. 59
  3. ^ Mlodinow 2001, Part III The Story of Gauss
  4. ^ S. F. Lacroix (1816) Essais sur L'Enseignement en Général, et sur celui des Mathématiques en Particulier, page 207, Libraire pur les Mathématiques.
  5. ^ a b Herbert Busemann and Paul J. Kelly (1953) Projective Geometry and Projective Metrics, Preface, page v, Academic Press
  6. ^ Klein, Felix C. (2025-08-05), "A comparative review of recent researches in geometry", arXiv:0807.3161 [math.HO]
  7. ^ David Hilbert, 1980 (1899). The Foundations of Geometry, 2nd edition, §22 Desargues Theorem, Chicago: Open Court
  8. ^ Pambuccian, Victor; Schacht, Celia (2021), "The Case for the Irreducibility of Geometry to Algebra", Philosophia Mathematica, 29 (4): 1–31, doi:10.1093/philmat/nkab022
  9. ^ Ernst K?tter (1901), Die Entwickelung der Synthetischen Geometrie von Monge bis auf Staudt (1847) (2012 Reprint as ISBN 1275932649)

References

[edit]

Further reading

[edit]


53岁属什么 月亮是什么 子宫内膜厚有什么危害 五十肩是什么意思 什么猪没有嘴
什么时候入伏 罗马棉是什么面料 下午五点多是什么时辰 阴道放气是什么原因 对什么都不感兴趣
双休什么意思 痛风吃什么中药最有效 大学硕士点是什么意思 熊是什么生肖 核心是什么意思
pp材质是什么意思 姨太太是什么意思 氯中毒吃什么可以解毒 8月31日什么星座 什么解酒最好最快
策反是什么意思jasonfriends.com 健胃消食片什么时候吃最好hcv9jop4ns0r.cn 经期是什么意思hcv9jop2ns2r.cn 青霉素v钾片治什么病hcv8jop0ns7r.cn 组织部长是什么级别hcv7jop5ns4r.cn
nm是什么意思hcv9jop1ns3r.cn 肛门里面有个肉疙瘩是什么hcv8jop0ns4r.cn 子宫脱落有什么症状weuuu.com 牙根疼吃什么药hcv8jop9ns0r.cn 男孩子断掌有什么说法hcv7jop6ns6r.cn
svip和vip有什么区别hcv9jop6ns2r.cn 支气管舒张试验阳性说明什么hcv8jop9ns9r.cn 女主是什么意思xjhesheng.com 为什么不能抖腿jinxinzhichuang.com 暗里着迷什么意思hcv8jop2ns0r.cn
有炎症吃什么药hcv9jop6ns5r.cn 脾虚是什么原因导致的hcv7jop6ns9r.cn 皮肤发白一块一块的是什么病hcv8jop3ns0r.cn 什么的辨认hcv7jop4ns8r.cn 枸杞是补什么的hcv8jop5ns8r.cn
百度