纸老虎比喻什么样的人| 反手引体向上练什么肌肉| 智齿吃什么消炎药| 6月1号是什么星座| 反应迟钝是什么原因造成的| 父母都没有狐臭为什么孩子会有呢| 相濡以沫是什么意思| 8月1号是什么星座| 女性尿频吃什么药| 前列腺炎不治疗有什么后果| 黄金芽属于什么茶| 双肺纹理增多增粗是什么意思| 绿色的蛇是什么蛇| 氯吡格雷是什么药| 米线用什么做的| 圣人是什么意思| 阳气不足是什么意思| 鼻子经常流鼻涕是什么原因| 绝望是什么意思| 三本是什么学历| 三宝是什么意思| 一直流鼻血是什么原因| 太抽象了是什么意思| dmf是什么溶剂| 膀胱炎是什么症状| 念五行属什么| 梦见狗咬别人是什么意思| 老气横秋是什么意思| 解脲支原体是什么| 女人吃什么能活血化瘀| 风属于五行属什么| 单亲家庭是什么意思| 蚂蚁为什么要搬家| 蜂王浆什么味道| 什么叫副乳| 神经炎吃什么药| 祸起萧墙的萧墙指什么| 荷花的别称是什么| 弄得什么| 为什么老流鼻血| 麦乳精是什么东西| 腹膜炎吃什么药| 金牛座是什么星象| 云南小黄姜和普通姜有什么区别| 梦见找鞋子是什么意思| 大姨妈来能吃什么水果| 女人脾肾两虚吃什么好| 怀孕肚子痒是什么原因| 小便短赤什么意思| 坐月子是什么意思| 童话故事有什么| 河汉是什么意思| 崩盘是什么意思| 4月什么星座| 儿童过敏性结膜炎用什么眼药水| 兔子和什么属相相冲| 珍珠鸟是什么鸟| 阴道炎用什么药效果最好| 什么水果降火效果最好| 老是感冒是什么原因| 铁路12306什么时候放票| 胃糜烂吃什么药可以根治| 无可奈何的笑是什么笑| 系统b超主要检查什么| 什么颜色招财并聚财| 吃什么食物帮助睡眠| 红豆大红豆芋头是什么歌| 一直打喷嚏是什么原因| 枸杞有什么用| 貘是什么| 胃不舒服吃什么| 拉稀拉水吃什么药管用| 兰花是什么颜色| 结膜出血用什么眼药水| 1月26日是什么星座| 十月十六号是什么星座| 心律失常是什么症状| 提拔是什么意思| 打嗝是什么原因| 胰岛是什么器官| 后续是什么意思| 榴莲什么时候最便宜| 女性尿酸低是什么原因| 喝红酒有什么好处| 肚脐下面是什么部位| rj什么意思| 石英岩玉是什么| 盆腔炎吃什么药效果好| 夏天喝绿茶有什么好处| c是什么单位| 男人第一次什么 感觉| 打日本电话前面加什么| 汽化是什么意思| 2157是什么意思| 孕妇感染弓形虫有什么症状| 果酸有什么作用| 小暑是什么意思| 冲猴煞北是什么意思| 地瓜不能和什么一起吃| 湿气重吃什么调理| 正佳广场有什么好玩的| 圣诞节什么时候| 灵魂契合是什么意思| 副营长是什么军衔| 泽什么意思| 粤语什么怎么说| 这什么情况| 什么眼睛| 什么时候割包皮最好| 小腹凸起是什么原因| 十全十美是什么生肖| 四大皆空是什么生肖| 舌炎吃什么药| 嗓子发炎吃什么水果| 12.29是什么星座| 老放屁是什么病的征兆| 什么的蚜虫| miki是什么意思| 本科和专科是什么意思| 什么是感觉| 缴费基数是什么意思| 各就各位是什么意思| 疾控中心是干什么的| 1959年是什么年| 盗汗是什么原因造成的| cas是什么| 左下腹痛是什么原因| 马齿苋与什么食物相克| 911是什么星座| 小年是什么时候| 4月什么星座| 纯原是什么意思| 为什么会黄体破裂| o型血与a型血生的孩子是什么血型| mid是什么意思| 35岁属什么| 深蹲有什么好处| 脾肺气虚吃什么中成药| 什么家庭不宜挂八骏图| 阴虱用什么药可以根除| 益生菌什么时候吃| 不走寻常路是什么意思| 后是什么意思| 胎儿头偏小是什么原因引起的| 金碧辉煌是什么生肖| 春晓的晓是什么意思| 眼袋肿是什么原因| 河豚为什么有毒| 上官是什么意思| 跪安是什么意思| 五十坐地能吸土是什么意思| 美缝剂什么牌子的好| 什么叫多囊| 茶鱼是什么鱼| 克山病是什么病| 吃什么排毒最快| 真五行属什么| 火车头是什么意思| 尿素氮是什么| 心性是什么意思| 额头爱出汗是什么原因| 珩五行属什么| 周期性是什么意思| 考号是什么| 灰指甲用什么药效果好| 遥字五行属什么| cap是什么| 什么是相位| 肝肾不足证是什么意思| 龟头炎什么症状| 为什么美国支持以色列| 鱼跳出鱼缸有什么征兆| 喉咙有痰吐出来有血是什么原因| j是什么| 皮疹是什么原因引起的| 阄是什么意思| 9月3日是什么星座的| 为什么不能天天做有氧运动| 撒贝宁是什么族| 什么时候吃苹果最好| 血肌酐是什么意思| 膏肓是什么意思| 五月二十号是什么星座| 湿疹为什么反反复复好不了| 井底之蛙是什么意思| 1964年是什么年| 男人是什么动物| 部队大校是什么级别| 为什么长不胖一直很瘦| 贫血吃什么食物| 乙肝两对半245阳性是什么意思| 玫瑰茄是什么东西| 包皮属于什么科| 牡丹是什么季节开的| 明年属什么生肖| 烧包是什么意思| 断码是什么意思| 门口放镜子有什么讲究| 飞廉是什么意思| 什么是肾阴虚| 凉粉是什么材料做的| 浮沉是什么意思| 猪狗不如是什么生肖| 一日清闲一日仙是什么生肖| 梦代表什么生肖| 一天中什么时候最热| 什么是破伤风| 头痒用什么洗头可以止痒| 心想事成是什么意思| 州和洲有什么区别| 海藻糖是什么糖| 常识是什么意思| 柠檬泡水喝有什么好处| r0lex是什么牌子手表| 梦见蟑螂是什么意思| 什么人每天靠运气赚钱| 汆是什么意思| 靠谱是什么意思| 肌红蛋白高是什么原因| 白电油对人体有什么危害| 早上九点到十点是什么时辰| 什么东西补锌| 就绪是什么意思| 凉面用的是什么面条| 牙齿痛吃什么药好| 敞开心扉是什么意思| 蝙蝠是什么动物| 吃什么囊肿会消失| ppm是什么| 中药龙骨是什么东西| 氯吡格雷是什么药| 什么是胃肠型更年期| 宝宝消化不良吃什么药| 料理机是干什么用的| 便秘吃什么有用| 值神天刑是什么意思| 心肌缺血吃什么中药| 1893年属什么| 什么生日的人有佛缘| 儿童内热吃什么去内热| 做爱什么姿势最舒服| 男生爱出汗是什么原因| 脾虚生痰吃什么中成药| ghost是什么意思| 79年属羊的是什么命| 蛋白粉适合什么人群吃| 红萝卜不能和什么一起吃| 女予念什么| 红黄是什么颜色| 非特异性t波异常是什么意思| palladium是什么牌子| 肺鳞癌是什么意思| 私处痒是什么原因| 白质脱髓鞘是什么病| 胎儿双肾盂分离是什么意思| mg什么单位| 每天喝牛奶有什么好处| 眼睛老是流眼泪是什么原因| 喝水都长肉是什么原因| 11月份生日是什么星座| 防蓝光眼镜有什么好处| 马步鱼是什么鱼| 月经来一点又不来了是什么原因| 医生助理是做什么的| 百度Jump to content

“新时代、新梦想”网络媒体新春走基层

From Wikipedia, the free encyclopedia
Bi-dimensional Cartesian coordinate system
百度 当前,要深刻认识深化党和国家机构改革的重大意义,增强“四个意识”,坚定“四个自信”,自觉把思想和行动统一到党中央决策部署上来,团结一心,扎实工作,在深化党和国家机构改革中交出满意答卷。

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.

History

[edit]

Books I through IV and VI of Euclid's Elements dealt with two-dimensional geometry, developing such notions as similarity of shapes, the Pythagorean theorem (Proposition 47), equality of angles and areas, parallelism, the sum of the angles in a triangle, and the three cases in which triangles are "equal" (have the same area), among many other topics.

Later, the plane was described in a so-called Cartesian coordinate system, a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances from the point to two fixed perpendicular directed lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis of the system, and the point where they meet is its origin, usually at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin.

The idea of this system was developed in 1637 in writings by Descartes and independently by Pierre de Fermat, although Fermat also worked in three dimensions, and did not publish the discovery.[1] Both authors used a single (abscissa) axis in their treatments, with the lengths of ordinates measured along lines not-necessarily-perpendicular to that axis.[2] The concept of using a pair of fixed axes was introduced later, after Descartes' La Géométrie was translated into Latin in 1649 by Frans van Schooten and his students. These commentators introduced several concepts while trying to clarify the ideas contained in Descartes' work.[3]

Later, the plane was thought of as a field, where any two points could be multiplied and, except for 0, divided. This was known as the complex plane. The complex plane is sometimes called the Argand plane because it is used in Argand diagrams. These are named after Jean-Robert Argand (1768–1822), although they were first described by Danish-Norwegian land surveyor and mathematician Caspar Wessel (1745–1818).[4] Argand diagrams are frequently used to plot the positions of the poles and zeroes of a function in the complex plane.

In geometry

[edit]

Coordinate systems

[edit]

In mathematics, analytic geometry (also called Cartesian geometry) describes every point in two-dimensional space by means of two coordinates. Two perpendicular coordinate axes are given which cross each other at the origin. They are usually labeled x and y. Relative to these axes, the position of any point in two-dimensional space is given by an ordered pair of real numbers, each number giving the distance of that point from the origin measured along the given axis, which is equal to the distance of that point from the other axis.

Another widely used coordinate system is the polar coordinate system, which specifies a point in terms of its distance from the origin and its angle relative to a rightward reference ray.

Embedding in three-dimensional space

[edit]
Plane equation in normal form

In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimally thin.

While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

Polytopes

[edit]

In two dimensions, there are infinitely many polytopes: the polygons. The first few regular ones are shown below:

Convex

[edit]

The Schl?fli symbol represents a regular n-gon.

Name Triangle
(2-simplex)
Square
(2-orthoplex)
(2-cube)
Pentagon Hexagon Heptagon Octagon
Schl?fli symbol {3} {4} {5} {6} {7} {8}
Image
Name Nonagon Decagon Hendecagon Dodecagon Tridecagon Tetradecagon
Schl?fli {9} {10} {11} {12} {13} {14}
Image
Name Pentadecagon Hexadecagon Heptadecagon Octadecagon Enneadecagon Icosagon ...n-gon
Schl?fli {15} {16} {17} {18} {19} {20} {n}
Image

Degenerate (spherical)

[edit]

The regular monogon (or henagon) {1} and regular digon {2} can be considered degenerate regular polygons and exist nondegenerately in non-Euclidean spaces like a 2-sphere, 2-torus, or right circular cylinder.

Name Monogon Digon
Schl?fli {1} {2}
Image

Non-convex

[edit]

There exist infinitely many non-convex regular polytopes in two dimensions, whose Schl?fli symbols consist of rational numbers {n/m}. They are called star polygons and share the same vertex arrangements of the convex regular polygons.

In general, for any natural number n, there are n-pointed non-convex regular polygonal stars with Schl?fli symbols {n/m} for all m such that m < n/2 (strictly speaking {n/m} = {n/(n ? m)}) and m and n are coprime.

Name Pentagram Heptagrams Octagram Enneagrams Decagram ...n-agrams
Schl?fli {5/2} {7/2} {7/3} {8/3} {9/2} {9/4} {10/3} {n/m}
Image  

Circle

[edit]

The hypersphere in 2 dimensions is a circle, sometimes called a 1-sphere (S1) because it is a one-dimensional manifold. In a Euclidean plane, it has the length 2πr and the area of its interior is

where is the radius.

Other shapes

[edit]

There are an infinitude of other curved shapes in two dimensions, notably including the conic sections: the ellipse, the parabola, and the hyperbola.

In linear algebra

[edit]

Another mathematical way of viewing two-dimensional space is found in linear algebra, where the idea of independence is crucial. The plane has two dimensions because the length of a rectangle is independent of its width. In the technical language of linear algebra, the plane is two-dimensional because every point in the plane can be described by a linear combination of two independent vectors.

Dot product, angle, and length

[edit]

The dot product of two vectors A = [A1, A2] and B = [B1, B2] is defined as:[5]

A vector can be pictured as an arrow. Its magnitude is its length, and its direction is the direction the arrow points. The magnitude of a vector A is denoted by . In this viewpoint, the dot product of two Euclidean vectors A and B is defined by[6]

where θ is the angle between A and B.

The dot product of a vector A by itself is

which gives

the formula for the Euclidean length of the vector.

In calculus

[edit]

Gradient

[edit]

In a rectangular coordinate system, the gradient is given by

Line integrals and double integrals

[edit]

For some scalar field f : U ? R2R, the line integral along a piecewise smooth curve C ? U is defined as

where r: [a, b] → C is an arbitrary bijective parametrization of the curve C such that r(a) and r(b) give the endpoints of C and .

For a vector field F : U ? R2R2, the line integral along a piecewise smooth curve C ? U, in the direction of r, is defined as

where · is the dot product and r: [a, b] → C is a bijective parametrization of the curve C such that r(a) and r(b) give the endpoints of C.

A double integral refers to an integral within a region D in R2 of a function and is usually written as:

Fundamental theorem of line integrals

[edit]

The fundamental theorem of line integrals says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve.

Let . Then

with p, q the endpoints of the curve γ.

Green's theorem

[edit]

Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then[7][8]

where the path of integration along C is counterclockwise.

In topology

[edit]

In topology, the plane is characterized as being the unique contractible 2-manifold.

Its dimension is characterized by the fact that removing a point from the plane leaves a space that is connected, but not simply connected.

In graph theory

[edit]

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other.[9] Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

See also

[edit]

References

[edit]
  1. ^ "Analytic geometry". Encyclop?dia Britannica (Online ed.). 2008.
  2. ^ Katz, Victor J. (2009) [1993]. A History of Mathematics (3rd ed.). Boston: Addison-Wesley. p. 484. ISBN 978-0-321-38700-4.
  3. ^ Burton 2011, p. 374
  4. ^ Wessel's memoir was presented to the Danish Academy in 1797; Argand's paper was published in 1806. (Whittaker & Watson, 1927, p. 9)
  5. ^ S. Lipschutz; M. Lipson (2009). Linear Algebra (Schaum's Outlines) (4th ed.). McGraw Hill. ISBN 978-0-07-154352-1.
  6. ^ M.R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum's Outlines) (2nd ed.). McGraw Hill. ISBN 978-0-07-161545-7.
  7. ^ Mathematical methods for physics and engineering, K.F. Riley, M.P. Hobson, S.J. Bence, Cambridge University Press, 2010, ISBN 978-0-521-86153-3
  8. ^ Vector Analysis (2nd Edition), M.R. Spiegel, S. Lipschutz, D. Spellman, Schaum's Outlines, McGraw Hill (USA), 2009, ISBN 978-0-07-161545-7
  9. ^ Trudeau, Richard J. (1993). Introduction to Graph Theory (Corrected, enlarged republication. ed.). New York: Dover Pub. p. 64. ISBN 978-0-486-67870-2. Retrieved 8 August 2012. Thus a planar graph, when drawn on a flat surface, either has no edge-crossings or can be redrawn without them.

Works cited

[edit]
  • Burton, David M. (2011), The History of Mathematics / An Introduction (7th ed.), McGraw Hill, ISBN 978-0-07-338315-6
塑料袋是什么材质 电气火灾用什么灭火 仕途是什么意思 为什么会突然流鼻血 总胆红素高是什么病
外阴白斑有什么症状 glenfiddich是什么酒 梦见鬼是什么意思 宝石蓝是什么颜色 有里面没有两横是什么字
东北方五行属什么 二次元文化是什么意思 甘油三酯高不能吃什么 仙居杨梅什么时候上市 核素治疗是什么
月经为什么是黑色的 副连长是什么军衔 黑眼圈严重是什么原因 除服是什么意思 母亲属虎孩子属什么好
扁桃体结石有什么症状hcv8jop7ns1r.cn 粘胶纤维是什么面料yanzhenzixun.com 保家仙是什么意思hebeidezhi.com 打耳洞什么季节最好hcv8jop2ns8r.cn 刷酸是什么意思0297y7.com
什么的拼音怎么写hcv8jop4ns4r.cn 什么食物可以化解结石hcv9jop3ns5r.cn 君是什么意思hcv9jop3ns0r.cn 甲亢什么意思hcv9jop2ns9r.cn 7月1号什么星座hcv8jop6ns3r.cn
营长是什么军衔hcv8jop1ns6r.cn 舒字属于五行属什么luyiluode.com alds是什么病hcv8jop6ns4r.cn 脊髓损伤有什么症状weuuu.com 天体是什么hcv8jop7ns6r.cn
大红袍是什么茶类wzqsfys.com pin是什么hcv8jop6ns1r.cn 为什么老是睡不着hcv8jop8ns8r.cn 大陆对什么hcv8jop0ns5r.cn 凌霄什么意思hcv8jop8ns4r.cn
百度