夏天空调开什么模式| 知了长什么样| 木星是什么颜色| 中签是什么意思| 生长纹是什么原因| 姓蔡的女孩起什么名字| 看肺子要挂什么科| 医院dr检查是什么| 心梗是什么症状| 吃了紧急避孕药会有什么反应| 叶黄素对眼睛有什么功效| 颈椎病用什么药最好| 胃疼是什么症状| 农历10月19日是什么星座| 胎盘血窦是什么意思| 用牛奶敷脸有什么好处和坏处| 阴唇为什么一大一小| 电销是什么| 蜈蚣咬了擦什么药最好| 11月24是什么星座| 消失是什么意思| crayon什么意思| 自言自语说话是什么病| un读什么| 腿抽筋什么原因引起的| 秦王属什么生肖| 宝诰是什么意思| 什么是意境| 哈儿是什么意思| 总胆固醇什么意思| 乳腺癌吃什么好| 怀孕生化是什么意思| 2157是什么意思| 94狗跟什么属相配最好| 什么网站可以看三节片| 老年人手抖是什么原因| 红薯什么时候成熟| 1870年是什么朝代| or是什么意思| 虾虎鱼吃什么| 什么时候拔牙最好| 哀鸿遍野是什么意思| ais是什么意思| 血沉高是什么原因引起的| 献血浆有什么好处| 孕早期适合吃什么食物| 凌晨4点是什么时辰| 泰山在什么地方| 冷藏是什么意思| 婚检都检查什么项目| 口臭是什么原因导致的呢| 毕罗是什么食物| 什么是纳囊| 舌头两边锯齿状是什么原因| 右乳钙化灶是什么意思| 幽门螺旋杆菌什么症状| 人肉是什么味道的| 上热下寒吃什么中成药| 宫颈炎吃什么药好得快| 荷尔蒙分泌是什么意思| 素描是什么意思| 大便出血挂什么科| 2037年是什么年| 姓丁的女孩起什么名字好| 洛神花是什么| 蚕除了吃桑叶还能吃什么| 宫颈炎吃什么药好| 为什么总是犯困| dw是什么牌子| 身体水肿是什么原因引起的| 为什么说冬吃萝卜夏吃姜| 孕妇为什么会水肿| ct值是什么意思| 痛风打什么针见效最快| 多元是什么意思| 什么是乳酸堆积| 白细胞偏高说明什么| 游乐场都有什么项目| 胃酸吃什么食物好| 灵芝有什么功效与作用| 澳门使用什么货币| 一月28号是什么星座| 糜烂性胃炎可以吃什么蔬菜| 孕期心情不好对胎儿有什么影响| 3月份什么星座| 吃什么降尿酸最有效| 兔肉和什么相克| 什么是刷酸| ins风格是什么| 脑血管挂什么科| 97年属牛的是什么命| 心病有什么症状| 右肺下叶钙化灶是什么意思| 明目退翳什么意思| 为什么十个络腮九个帅| 0.8是什么意思| 杏花是什么生肖| 网球肘用什么药最有效| 益生菌适合什么人群吃| 什么是肾阳虚| lalabobo是什么牌子| 梦见涨洪水是什么兆头| 自恋是什么意思| 肮脏是什么意思| 汗毛重的女人意味着什么| 奶粉水解什么意思| 九月十二号是什么星座| 发现新大陆是什么意思| 菜籽油是什么油| 胃肠感冒吃什么食物比较好| 双侧卵巢显示不清是什么意思| 学业有成是什么意思| 线下培训是什么意思| 什么是体制内的工作| 回盲部憩室是什么意思| 引体向上有什么好处| 征字五行属什么| 李嘉诚是什么国籍| 否命题和命题的否定有什么区别| 狗喜欢吃什么食物| 过期葡萄酒有什么用途| 日本人为什么长寿| 日柱日元什么意思| 印度为什么没把墨脱占领| 什么是假性近视眼| 最高人民法院院长什么级别| 上海市市长是什么级别| 情人果是什么| 舌边有齿痕是什么原因| mp5是什么| 狗不能吃什么食物| 高级别上皮内瘤变是什么意思| 十二月四号是什么星座| 打蛋器什么牌子好| 破壁是什么意思| 貌不惊人是什么意思| 滑膜增厚是什么意思| 代孕是什么| 结石什么东西不能吃| 脾胃虚弱吃什么好| 中年人喝什么奶粉好| 奥特莱斯是什么店| 余字五行属什么| 枸杞加红枣泡水喝有什么功效| 肠胃感冒什么症状| 沉沦是什么意思| 父母什么血型会溶血| 香港五行属什么| 宛如是什么意思| 云南小黄姜和普通姜有什么区别| 水痘不能吃什么食物| 副师长是什么级别| 眼前有亮光闪是什么问题| 稀字五行属什么| 鼻子经常出血是什么原因| ella是什么意思| 莲字五行属什么| 为什么要打胰岛素| qs是什么意思| 巴结是什么意思| 医学P代表什么| 舌头紫红色是什么原因| 什么是好人| 夏天适合吃什么| 沙茶是什么| 被强奸是什么感觉| 媚字五行属什么| 鲱鱼罐头为什么这么臭| 负离子是什么东西| 阴唇大什么原因| 那敢情好是什么意思| 身上老出汗是什么原因引起的| 妲己是什么生肖| 液化是什么意思| 隙是什么意思| 鳏寡孤独是什么意思| 用什么擦地最干净| 乌鸡汤放什么材料| 月经前一周是什么期| 神经节是什么| 一张张什么| 一个入一个肉念什么| 一个合一个页读什么| 梦到血是什么意思| 印度什么时候独立的| 开车是什么意思| 广东有什么特产| 二十七岁属什么生肖| 吃什么皮肤变白| 大云是什么| 感冒去医院挂什么科| 茶化石属于什么茶| 龙涎是什么| 舌头破了是什么原因| 5201314是什么意思| 额窦炎吃什么药管用| 出汗多吃什么药| 高汤是什么意思| 头皮屑特别多是什么原因| 阿华田是什么饮料| 木耳菜又叫什么菜| 涮菜都有什么菜| 肚脐眼上方是什么器官| 9月10日是什么日子| 羊肉炖什么好吃| 腿脚肿胀是什么原因引起的| 纵隔占位是什么意思| KTV服务员主要做什么| 侏儒症是什么原因引起的| 盼头是什么意思| 肛门痒挂什么科检查| 毕业送什么礼物给老师| cpc是什么意思啊| 什么是窦性心律| 禄位是什么意思| 送奶奶什么礼物好| 老鼠属于什么类动物| ml什么意思| 宝宝喜欢趴着睡觉是什么原因| 补气养血吃什么中成药| 医保卡是什么样子的图| preparing是什么意思| 女性漏尿吃什么药最好| 暴饮暴食是什么意思| 什么拉车连蹦带跳歇后语| 狗狗取什么名字| 庚什么意思| 产妇吃什么下奶快又多又营养| 政委是什么军衔| 香槟是什么酒| 大腿疼是什么原因| 闰六月是什么意思| 行政许可是什么意思| 硫黄和硫磺有什么区别| 查甲状腺功能挂什么科| 西瓜可以做什么饮料| 250是什么意思| 晚上血压高是什么原因| 樟脑是什么东西| 狗狗肠胃不好吃什么药最好| 知了为什么要叫| 漂流需要准备什么东西| 黑布林是什么水果| 什么叫ins风格| 窦缓是什么意思| 5年存活率是什么意思| 独角仙吃什么| 马牙是什么原因引起的| r标是什么意思| 女团是什么意思| 棕色和什么颜色搭配好看| 枫树的叶子像什么| 心肌缺血是什么原因引起的| 月球是地球的什么| 狗眼看人低是什么意思| 蠼螋吃什么| 今年农历是什么年号| 倒数是什么| ph值高是什么原因| 左派是什么意思| 烘培是什么意思| 高大的什么| 62岁属什么生肖| 背道而驰是什么意思| 百度Jump to content

华云数据参加2016国际徽商大会 云计算倍受政企...

From Wikipedia, the free encyclopedia
百度 看看比赛有多轻松,比赛刚打了六分钟,詹姆斯和卡尔德隆挡拆,很快詹姆斯直插篮下。

In mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements.

Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions".[1]

Topologies on a finite set

[edit]

Let be a finite set. A topology on is a subset of (the power set of ) such that

  1. and .
  2. if then .
  3. if then .

In other words, a subset of is a topology if contains both and and is closed under arbitrary unions and intersections. Elements of are called open sets. The general description of topological spaces requires that a topology be closed under arbitrary (finite or infinite) unions of open sets, but only under intersections of finitely many open sets. Here, that distinction is unnecessary. Since the power set of a finite set is finite there can be only finitely many open sets (and only finitely many closed sets).

A topology on a finite set can also be thought of as a sublattice of which includes both the bottom element and the top element .

Examples

[edit]

0 or 1 points

[edit]

There is a unique topology on the empty set ?. The only open set is the empty one. Indeed, this is the only subset of ?.

Likewise, there is a unique topology on a singleton set {a}. Here the open sets are ? and {a}. This topology is both discrete and trivial, although in some ways it is better to think of it as a discrete space since it shares more properties with the family of finite discrete spaces.

For any topological space X there is a unique continuous function from ? to X, namely the empty function. There is also a unique continuous function from X to the singleton space {a}, namely the constant function to a. In the language of category theory the empty space serves as an initial object in the category of topological spaces while the singleton space serves as a terminal object.

2 points

[edit]

Let X = {a,b} be a set with 2 elements. There are four distinct topologies on X:

  1. {?, {a,b}} (the trivial topology)
  2. {?, {a}, {a,b}}
  3. {?, {b}, {a,b}}
  4. {?, {a}, {b}, {a,b}} (the discrete topology)

The second and third topologies above are easily seen to be homeomorphic. The function from X to itself which swaps a and b is a homeomorphism. A topological space homeomorphic to one of these is called a Sierpiński space. So, in fact, there are only three inequivalent topologies on a two-point set: the trivial one, the discrete one, and the Sierpiński topology.

The specialization preorder on the Sierpiński space {a,b} with {b} open is given by: aa, bb, and ab.

3 points

[edit]

Let X = {a,b,c} be a set with 3 elements. There are 29 distinct topologies on X but only 9 inequivalent topologies:

  1. {?, {a,b,c}}
  2. {?, {c}, {a,b,c}}
  3. {?, {a,b}, {a,b,c}}
  4. {?, {c}, {a,b}, {a,b,c}}
  5. {?, {c}, {b,c}, {a,b,c}} (T0)
  6. {?, {c}, {a,c}, {b,c}, {a,b,c}} (T0)
  7. {?, {a}, {b}, {a,b}, {a,b,c}} (T0)
  8. {?, {b}, {c}, {a,b}, {b,c}, {a,b,c}} (T0)
  9. {?, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}} (T0)

The last 5 of these are all T0. The first one is trivial, while in 2, 3, and 4 the points a and b are topologically indistinguishable.

4 points

[edit]

Let X = {a,b,c,d} be a set with 4 elements. There are 355 distinct topologies on X but only 33 inequivalent topologies:

  1. {?, {a, b, c, d}}
  2. {?, {a, b, c}, {a, b, c, d}}
  3. {?, {a}, {a, b, c, d}}
  4. {?, {a}, {a, b, c}, {a, b, c, d}}
  5. {?, {a, b}, {a, b, c, d}}
  6. {?, {a, b}, {a, b, c}, {a, b, c, d}}
  7. {?, {a}, {a, b}, {a, b, c, d}}
  8. {?, {a}, {b}, {a, b}, {a, b, c, d}}
  9. {?, {a, b, c}, {d}, {a, b, c, d}}
  10. {?, {a}, {a, b, c}, {a, d}, {a, b, c, d}}
  11. {?, {a}, {a, b, c}, {d}, {a, d}, {a, b, c, d}}
  12. {?, {a}, {b, c}, {a, b, c}, {a, d}, {a, b, c, d}}
  13. {?, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  14. {?, {a, b}, {c}, {a, b, c}, {a, b, c, d}}
  15. {?, {a, b}, {c}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  16. {?, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, {a, b, c, d}}
  17. {?, {b, c}, {a, d}, {a, b, c, d}}
  18. {?, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  19. {?, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  20. {?, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  21. {?, {a}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  22. {?, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  23. {?, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  24. {?, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  25. {?, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  26. {?, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  27. {?, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, b, c, d}} (T0)
  28. {?, {a}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  29. {?, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  30. {?, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  31. {?, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  32. {?, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}} (T0)
  33. {?, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} (T0)

The last 16 of these are all T0.

Properties

[edit]

Specialization preorder

[edit]

Topologies on a finite set X are in one-to-one correspondence with preorders on X. Recall that a preorder on X is a binary relation on X which is reflexive and transitive.

Given a (not necessarily finite) topological space X we can define a preorder on X by

xy if and only if x ∈ cl{y}

where cl{y} denotes the closure of the singleton set {y}. This preorder is called the specialization preorder on X. Every open set U of X will be an upper set with respect to ≤ (i.e. if xU and xy then yU). Now if X is finite, the converse is also true: every upper set is open in X. So for finite spaces, the topology on X is uniquely determined by ≤.

Going in the other direction, suppose (X, ≤) is a preordered set. Define a topology τ on X by taking the open sets to be the upper sets with respect to ≤. Then the relation ≤ will be the specialization preorder of (X, τ). The topology defined in this way is called the Alexandrov topology determined by ≤.

The equivalence between preorders and finite topologies can be interpreted as a version of Birkhoff's representation theorem, an equivalence between finite distributive lattices (the lattice of open sets of the topology) and partial orders (the partial order of equivalence classes of the preorder). This correspondence also works for a larger class of spaces called finitely generated spaces. Finitely generated spaces can be characterized as the spaces in which an arbitrary intersection of open sets is open. Finite topological spaces are a special class of finitely generated spaces.


Compactness and countability

[edit]

Every finite topological space is compact since any open cover must already be finite. Indeed, compact spaces are often thought of as a generalization of finite spaces since they share many of the same properties.

Every finite topological space is also second-countable (there are only finitely many open sets) and separable (since the space itself is countable).

Separation axioms

[edit]

If a finite topological space is T1 (in particular, if it is Hausdorff) then it must, in fact, be discrete. This is because the complement of a point is a finite union of closed points and therefore closed. It follows that each point must be open.

Therefore, any finite topological space which is not discrete cannot be T1, Hausdorff, or anything stronger.

However, it is possible for a non-discrete finite space to be T0. In general, two points x and y are topologically indistinguishable if and only if xy and yx, where ≤ is the specialization preorder on X. It follows that a space X is T0 if and only if the specialization preorder ≤ on X is a partial order. There are numerous partial orders on a finite set. Each defines a unique T0 topology.

Similarly, a space is R0 if and only if the specialization preorder is an equivalence relation. Given any equivalence relation on a finite set X the associated topology is the partition topology on X. The equivalence classes will be the classes of topologically indistinguishable points. Since the partition topology is pseudometrizable, a finite space is R0 if and only if it is completely regular.

Non-discrete finite spaces can also be normal. The excluded point topology on any finite set is a completely normal T0 space which is non-discrete.

Connectivity

[edit]

Connectivity in a finite space X is best understood by considering the specialization preorder ≤ on X. We can associate to any preordered set X a directed graph Γ by taking the points of X as vertices and drawing an edge xy whenever xy. The connectivity of a finite space X can be understood by considering the connectivity of the associated graph Γ.

In any topological space, if xy then there is a path from x to y. One can simply take f(0) = x and f(t) = y for t > 0. It is easy to verify that f is continuous. It follows that the path components of a finite topological space are precisely the (weakly) connected components of the associated graph Γ. That is, there is a topological path from x to y if and only if there is an undirected path between the corresponding vertices of Γ.

Every finite space is locally path-connected since the set

is a path-connected open neighborhood of x that is contained in every other neighborhood. In other words, this single set forms a local base at x.

Therefore, a finite space is connected if and only if it is path-connected. The connected components are precisely the path components. Each such component is both closed and open in X.

Finite spaces may have stronger connectivity properties. A finite space X is

  • hyperconnected if and only if there is a greatest element with respect to the specialization preorder. This is an element whose closure is the whole space X.
  • ultraconnected if and only if there is a least element with respect to the specialization preorder. This is an element whose only neighborhood is the whole space X.

For example, the particular point topology on a finite space is hyperconnected while the excluded point topology is ultraconnected. The Sierpiński space is both.

Additional structure

[edit]

A finite topological space is pseudometrizable if and only if it is R0. In this case, one possible pseudometric is given by

where xy means x and y are topologically indistinguishable. A finite topological space is metrizable if and only if it is discrete.

Likewise, a topological space is uniformizable if and only if it is R0. The uniform structure will be the pseudometric uniformity induced by the above pseudometric.

Algebraic topology

[edit]

Perhaps surprisingly, there are finite topological spaces with nontrivial fundamental groups. A simple example is the pseudocircle, which is space X with four points, two of which are open and two of which are closed. There is a continuous map from the unit circle S1 to X which is a weak homotopy equivalence (i.e. it induces an isomorphism of homotopy groups). It follows that the fundamental group of the pseudocircle is infinite cyclic.

More generally it has been shown that for any finite abstract simplicial complex K, there is a finite topological space XK and a weak homotopy equivalence f : |K| → XK where |K| is the geometric realization of K. It follows that the homotopy groups of |K| and XK are isomorphic. In fact, the underlying set of XK can be taken to be K itself, with the topology associated to the inclusion partial order.

Number of topologies on a finite set

[edit]

As discussed above, topologies on a finite set are in one-to-one correspondence with preorders on the set, and T0 topologies are in one-to-one correspondence with partial orders. Therefore, the number of topologies on a finite set is equal to the number of preorders and the number of T0 topologies is equal to the number of partial orders.

The table below lists the number of distinct (T0) topologies on a set with n elements. It also lists the number of inequivalent (i.e. nonhomeomorphic) topologies.

Number of topologies on a set with n points
n Distinct
topologies
Distinct
T0 topologies
Inequivalent
topologies
Inequivalent
T0 topologies
0 1 1 1 1
1 1 1 1 1
2 4 3 3 2
3 29 19 9 5
4 355 219 33 16
5 6942 4231 139 63
6 209527 130023 718 318
7 9535241 6129859 4535 2045
8 642779354 431723379 35979 16999
9 63260289423 44511042511 363083 183231
10 8977053873043 6611065248783 4717687 2567284
OEIS A000798 A001035 A001930 A000112

Let T(n) denote the number of distinct topologies on a set with n points. There is no known simple formula to compute T(n) for arbitrary n. The Online Encyclopedia of Integer Sequences presently lists T(n) for n ≤ 18.

The number of distinct T0 topologies on a set with n points, denoted T0(n), is related to T(n) by the formula

where S(n,k) denotes the Stirling number of the second kind.

See also

[edit]

References

[edit]
  1. ^ Thurston, William P. (April 1994). "On Proof and Progress in Mathematics". Bulletin of the American Mathematical Society. 30 (2): 161–177. arXiv:math/9404236. doi:10.1090/S0273-0979-1994-00502-6.
[edit]
觅食是什么意思 恏是什么意思 芡实是什么 98年是什么年 长鱼是什么鱼
什么药和酒一起吃必死 尾骨疼是什么原因 食禄痣是什么意思 景色什么 什么情况啊这是
高铁座位为什么没有e座 in77是什么意思 跳什么舞减肥最快 吃什么东西减肥 手麻什么原因
儿白是什么意思 胃难受想吐是什么原因 前列腺炎有些什么症状 松花蛋是什么蛋 梦见杀猪是什么意思
小肚鸡肠是什么意思hcv8jop3ns0r.cn 夏字五行属什么hcv9jop0ns3r.cn 鸟屎掉脸上有什么预兆hcv8jop8ns8r.cn 八0年属什么生肖hcv9jop2ns9r.cn 牙龈疼吃什么药hcv8jop6ns4r.cn
小肚子胀疼是什么原因hcv8jop4ns9r.cn 白肉是指什么肉hcv9jop1ns6r.cn 38妇女节送老婆什么礼物hcv8jop2ns0r.cn 什么泡面最好吃hcv9jop1ns2r.cn 突然眩晕是什么原因xinmaowt.com
面瘫挂什么科hcv8jop3ns7r.cn 鱼和熊掌不可兼得什么意思hcv8jop7ns5r.cn 胆小怕事是什么生肖hcv9jop0ns1r.cn 芥末为什么会冲鼻cj623037.com 空降是什么意思shenchushe.com
唐氏综合征是什么hcv8jop6ns0r.cn 有什么好看的三级片jinxinzhichuang.com 卵巢囊肿挂什么科hcv8jop5ns5r.cn 厚颜无耻是什么生肖hcv7jop4ns8r.cn 为什么总是长口腔溃疡hcv9jop0ns6r.cn
百度