pu什么意思| 5月12日什么星座| 胆的作用和功能是什么| 局灶癌变是什么意思| 月经量少吃什么药| 为什么吃鸽子刀口长得快| 西红柿生吃有什么好处| 自豪的什么| 鸟衣念什么| 子宫内膜息肉样增生是什么意思| 用字五行属什么| 抗原和抗体有什么区别| 肚脐右边是什么器官| 汀是什么意思| 马岱字什么| po医学上是什么意思| 上午十点半是什么时辰| 黄瓜为什么是绿色的| 女人左眼跳是什么预兆| 北斗星代表什么生肖| 祖马龙是什么档次| 喝老陈醋有什么好处| 血小板高是什么引起的| 冷感冒吃什么药好得快| 慢生活是什么意思| 什么叫混合痔| 正因数是什么| 高血钾是什么意思| 宫颈潴留性囊肿是什么| 清鱼是什么鱼| 刑警是干什么的| 棚户区改造和拆迁有什么区别| 什么牛排最好吃| pp是什么材料| 双相情感障碍是什么| 肠胃炎引起的发烧吃什么药| 低血压高吃什么药| 晟怎么读音是什么| 羽毛球拍磅数是什么意思| 什么米好吃又香又软| 胃气虚吃什么中成药| 毛囊炎是什么| 晚上吃什么水果减肥效果最好| 人工虎骨粉是什么做的| 荣誉的誉是什么意思| 靶向药是什么意思| 猕猴桃什么季节成熟| 黄瓜有什么营养价值| 肛门被捅后有什么影响| 县委办公室主任是什么级别| 雾化用什么药| 40周年是什么婚| 大运是什么| 暑假什么时候结束| 品种是什么意思| 中度脂肪肝吃什么药| 9月份怀孕预产期是什么时候| 2月1日什么星座| sf是什么意思| 睡觉翻白眼是什么原因| ebay什么意思| 六味地黄丸有什么副作用吗| 前列腺实质回声欠均匀什么意思| 父亲节什么时间| 上火吃什么| 总做梦是什么原因| bb霜和粉底液有什么区别| 宝宝肠炎吃什么药| 窦性心动过缓什么意思| 最近有什么新闻| 耳朵发烫是什么征兆| 屁股一侧疼是什么原因| 血小板低吃什么补得快| 为什么养猫就没有蟑螂| 蓝矾对人有什么危害| 痛风用什么消炎药最好| 偷是什么生肖| 犬和狗有什么区别| 上面一个日下面一个立是什么字| 人口基数是什么意思| 锻炼pc肌有什么好处| 蜜蜡五行属什么| 夜晚的星星像什么| 梦见自己家盖房子是什么预兆| 脑供血不足用什么药好| 佛灯火命是什么意思| 突然头晕想吐是什么原因| 附件囊肿吃什么药最好| 什么东西最伤肾| 什么是生物钟| 跳蚤咬了擦什么药最好| 什么症状提示月经马上要来了| kkb什么意思| 喝酒前吃什么不容易醉| 轻断食是什么意思| x线检查是什么| 美人盂是什么意思| 拾到什么意思| 米字五行属什么| 宫颈ca什么意思| 饺子有什么馅| 九牛一毛指什么生肖| 风湿病吃什么药| 生理性囊肿是什么意思| 五月三十一号是什么星座| 化疗有什么副作用| lot是什么意思| acl医学上是什么意思| 什么叫靶向药| 贼头贼脑是什么生肖| 纳纹女装属于什么档次| 芳菲的意思是什么| 肌酐低是什么意思| 右加一笔是什么字| 准确值是什么意思| 系带是什么| crp高是什么意思| lga是什么意思| 有什么水能代替美瞳水| 什么是五官| 红花是什么生肖| 孩提是什么意思| 羊刃格是什么意思| 帮凶是什么意思| array是什么意思| 梦见玻璃碎了什么意思| 卦是什么意思| 89年属蛇是什么命| 为什么头出汗特别多| 心衰是什么原因引起的| 右侧卵巢囊性结构是什么意思| 丹宁蓝是什么颜色| 晚上睡觉流口水什么原因| 奥美拉唑治什么胃病| 锦衣夜行什么意思| 狐臭手术挂什么科| 女人辟邪带什么最好| 送朋友什么礼物好| 送女生什么礼物比较好| 猴和什么属相相冲| 泄气的意思是什么| lm是什么品牌| 8月24日是什么星座| 脾虚是什么原因导致的| 5月25是什么星座| 子宫息肉有什么危害| 马和驴为什么能杂交| 胡同是什么意思| 胃不好能吃什么水果| 吃什么会流产| 伏天是什么时候| 什么是渡劫| 10.21是什么星座| 智齿为什么叫智齿| 薄荷音是什么意思| 被虫咬了挂什么科| 长期手淫会有什么危害| 怀孕吃什么药可以流掉| 女生流白带意味着什么| 幼儿反复发烧是什么原因| 旦辞爷娘去的旦是什么意思| 水床是什么| 喝黑芝麻糊有什么好处| 花容月貌是什么意思| 血糖挂什么科| 啪啪啪什么感觉| 迅雷不及掩耳之势是什么意思| 头发为什么会分叉| 总是抽筋是什么原因| 脾五行属什么| crayon是什么意思| 书中自有颜如玉什么意思| 闭经是什么意思| 西瓜可以做成什么美食| 年柱亡神是什么意思| 7月4日是什么星座| 串联质谱筛查是什么病| 帆布是什么材质| 8月15号是什么日子| 新生儿五行缺什么查询| 牛肚是什么| 嗜血综合症是什么病| 睡觉口苦是什么原因| 睾丸痒用什么药膏最好| 独角仙生活在什么地方| 畏首畏尾是什么意思| noxa20是什么药| 甲状腺属于什么科| 狂犬疫苗什么时候打有效| 正常头皮是什么颜色的| 什么样的人容易孕酮低| 夫复何求是什么意思| 起水痘需要注意什么| MS医学上是什么意思| 白带清洁度lv是什么意思| 早餐吃什么最有营养又减肥| 昆仑玉什么颜色最贵| 血糖高能喝什么茶| 变异性哮喘咳嗽吃什么药| 基因病是什么意思| 首鼠两端是什么意思| 蚂蚁上树是什么意思| 左手发麻是什么原因| 戴珍珠手链有什么好处| 吃辣椒过敏是什么症状| 存款准备金率下调意味着什么| 怀孕十天左右有什么反应| 久字五行属什么| 停经闭经吃什么药调理| 肾病到什么程度腿会肿| 男人喜欢什么样的女人做老婆| 为什么有钱人不去植发| 象牙塔比喻什么| 乌梅是什么水果做的| 宫颈管搔刮术是什么| 胆囊腺肌症是什么病| dunhill是什么品牌| 宫外孕和宫内孕有什么区别| 白塞氏病是什么病| 怀孕吃鹅蛋有什么好处| 木薯粉在超市里叫什么| c4是什么驾驶证| 脂溢性皮炎头皮用什么洗发水| 秋天有什么植物| 马齿苋别名叫什么| eq是什么| 肝气不舒有什么症状| 爱情的本质是什么| 什么食物含叶黄素最多| 承五行属性是什么| 淼是什么意思| 老人过生日送什么礼物好| 大爷是什么意思| 童五行属什么| 靶向药物是什么| 古惑仔是什么| 甲状腺过氧化物酶抗体高说明什么问题| 柴鸡是什么鸡| 手发胀是什么前兆| 皮肤黑的人穿什么颜色的衣服显白| 妍字属于五行属什么| 不完全性右束支传导阻滞是什么意思| 头发染什么颜色显皮肤白显年轻| 甲沟炎是什么症状| 攻击的近义词是什么| 女人练瑜伽有什么好处| 异想天开是什么意思| 春梦了无痕是什么意思| 味粉是什么调料| 一切就绪是什么意思| 变爻是什么意思| 什么远什么长| 如痴如醉是什么意思| 生米煮成熟饭是什么意思| 耳朵痒是什么原因引起的| 粘膜慢性炎是什么意思| 农历十月初五是什么星座| 骨质增生吃什么药| 茄子和什么不能一起吃| 怀孕第一个月有什么反应| 夏天煲什么汤| 敏感肌是什么样的| 麒麟飞到北极会变成什么| 肾虚是什么原因引起的| 百度Jump to content

全球能源互联网建设提速 特高压万亿市场开启

From Wikipedia, the free encyclopedia
A composition of two opposite isometries is a direct isometry. A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion.[1]
百度 科学技术部对外保留国家外国专家局牌子。

In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.[a] The word isometry is derived from the Ancient Greek: ?σο? isos meaning "equal", and μ?τρον metron meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion.

Introduction

[edit]

Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry;[b] the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a reflection.

Isometries are often used in constructions where one space is embedded in another space. For instance, the completion of a metric space involves an isometry from into a quotient set of the space of Cauchy sequences on The original space is thus isometrically isomorphic to a subspace of a complete metric space, and it is usually identified with this subspace. Other embedding constructions show that every metric space is isometrically isomorphic to a closed subset of some normed vector space and that every complete metric space is isometrically isomorphic to a closed subset of some Banach space.

An isometric surjective linear operator on a Hilbert space is called a unitary operator.

Definition

[edit]

Let and be metric spaces with metrics (e.g., distances) and A map is called an isometry or distance-preserving map if for any ,

[4][c]

An isometry is automatically injective;[a] otherwise two distinct points, a and b, could be mapped to the same point, thereby contradicting the coincidence axiom of the metric d, i.e., if and only if . This proof is similar to the proof that an order embedding between partially ordered sets is injective. Clearly, every isometry between metric spaces is a topological embedding.

A global isometry, isometric isomorphism or congruence mapping is a bijective isometry. Like any other bijection, a global isometry has a function inverse. The inverse of a global isometry is also a global isometry.

Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y. The set of bijective isometries from a metric space to itself forms a group with respect to function composition, called the isometry group.

There is also the weaker notion of path isometry or arcwise isometry:

A path isometry or arcwise isometry is a map which preserves the lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective.[5][6] This term is often abridged to simply isometry, so one should take care to determine from context which type is intended.

Examples

Isometries between normed spaces

[edit]

The following theorem is due to Mazur and Ulam.

Definition:[7] The midpoint of two elements x and y in a vector space is the vector ?1/2?(x + y).

Theorem[7][8]Let A : XY be a surjective isometry between normed spaces that maps 0 to 0 (Stefan Banach called such maps rotations) where note that A is not assumed to be a linear isometry. Then A maps midpoints to midpoints and is linear as a map over the real numbers . If X and Y are complex vector spaces then A may fail to be linear as a map over .

Linear isometry

[edit]

Given two normed vector spaces and a linear isometry is a linear map that preserves the norms:

for all [9] Linear isometries are distance-preserving maps in the above sense. They are global isometries if and only if they are surjective.

In an inner product space, the above definition reduces to

for all which is equivalent to saying that This also implies that isometries preserve inner products, as

.

Linear isometries are not always unitary operators, though, as those require additionally that and (i.e. the domain and codomain coincide and defines a coisometry).

By the Mazur–Ulam theorem, any isometry of normed vector spaces over is affine.

A linear isometry also necessarily preserves angles, therefore a linear isometry transformation is a conformal linear transformation.

Examples

Manifold

[edit]

An isometry of a manifold is any (smooth) mapping of that manifold into itself, or into another manifold that preserves the notion of distance between points. The definition of an isometry requires the notion of a metric on the manifold; a manifold with a (positive-definite) metric is a Riemannian manifold, one with an indefinite metric is a pseudo-Riemannian manifold. Thus, isometries are studied in Riemannian geometry.

A local isometry from one (pseudo-)Riemannian manifold to another is a map which pulls back the metric tensor on the second manifold to the metric tensor on the first. When such a map is also a diffeomorphism, such a map is called an isometry (or isometric isomorphism), and provides a notion of isomorphism ("sameness") in the category Rm of Riemannian manifolds.

Definition

[edit]

Let and be two (pseudo-)Riemannian manifolds, and let be a diffeomorphism. Then is called an isometry (or isometric isomorphism) if

where denotes the pullback of the rank (0, 2) metric tensor by . Equivalently, in terms of the pushforward we have that for any two vector fields on (i.e. sections of the tangent bundle ),

If is a local diffeomorphism such that then is called a local isometry.

Properties

[edit]

A collection of isometries typically form a group, the isometry group. When the group is a continuous group, the infinitesimal generators of the group are the Killing vector fields.

The Myers–Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth (differentiable). A second form of this theorem states that the isometry group of a Riemannian manifold is a Lie group.

Symmetric spaces are important examples of Riemannian manifolds that have isometries defined at every point.

Generalizations

[edit]
  • Given a positive real number ε, an ε-isometry or almost isometry (also called a Hausdorff approximation) is a map between metric spaces such that
    1. for one has and
    2. for any point there exists a point with
That is, an ε-isometry preserves distances to within ε and leaves no element of the codomain further than ε away from the image of an element of the domain. Note that ε-isometries are not assumed to be continuous.
  • The restricted isometry property characterizes nearly isometric matrices for sparse vectors.
  • Quasi-isometry is yet another useful generalization.
  • One may also define an element in an abstract unital C*-algebra to be an isometry:
    is an isometry if and only if
Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse.

See also

[edit]

Footnotes

[edit]
  1. ^ a b "We shall find it convenient to use the word transformation in the special sense of a one-to-one correspondence among all points in the plane (or in space), that is, a rule for associating pairs of points, with the understanding that each pair has a first member P and a second member P' and that every point occurs as the first member of just one pair and also as the second member of just one pair...
    In particular, an isometry (or "congruent transformation," or "congruence") is a transformation which preserves length ..." — Coxeter (1969) p. 29[2]
  2. ^

    3.11 Any two congruent triangles are related by a unique isometry.— Coxeter (1969) p. 39[3]

  3. ^
    Let T be a transformation (possibly many-valued) of () into itself.
    Let be the distance between points p and q of , and let Tp, Tq be any images of p and q, respectively.
    If there is a length a > 0 such that whenever , then T is a Euclidean transformation of onto itself.[4]

References

[edit]
  1. ^ Coxeter 1969, p. 46

    3.51 Any direct isometry is either a translation or a rotation. Any opposite isometry is either a reflection or a glide reflection.

  2. ^ Coxeter 1969, p. 29
  3. ^ Coxeter 1969, p. 39
  4. ^ a b Beckman, F.S.; Quarles, D.A. Jr. (1953). "On isometries of Euclidean spaces" (PDF). Proceedings of the American Mathematical Society. 4 (5): 810–815. doi:10.2307/2032415. JSTOR 2032415. MR 0058193.
  5. ^ Le Donne, Enrico (2025-08-07). "Lipschitz and path isometric embeddings of metric spaces". Geometriae Dedicata. 166 (1): 47–66. doi:10.1007/s10711-012-9785-2. ISSN 1572-9168.
  6. ^ Burago, Dmitri; Burago, Yurii; Ivanov, Serge? (2001). "3 Constructions, §3.5 Arcwise isometries". A course in metric geometry. Graduate Studies in Mathematics. Vol. 33. Providence, RI: American Mathematical Society (AMS). pp. 86–87. ISBN 0-8218-2129-6.
  7. ^ a b Narici & Beckenstein 2011, pp. 275–339.
  8. ^ Wilansky 2013, pp. 21–26.
  9. ^ Thomsen, Jesper Funch (2017). Line?r algebra [Linear Algebra]. Department of Mathematics (in Danish). ?rhus: Aarhus University. p. 125.
  10. ^ Roweis, S.T.; Saul, L.K. (2000). "Nonlinear dimensionality reduction by locally linear embedding". Science. 290 (5500): 2323–2326. Bibcode:2000Sci...290.2323R. CiteSeerX 10.1.1.111.3313. doi:10.1126/science.290.5500.2323. PMID 11125150.
  11. ^ Saul, Lawrence K.; Roweis, Sam T. (June 2003). "Think globally, fit locally: Unsupervised learning of nonlinear manifolds". Journal of Machine Learning Research. 4 (June): 119–155. Quadratic optimisation of (page 135) such that
  12. ^ Zhang, Zhenyue; Zha, Hongyuan (2004). "Principal manifolds and nonlinear dimension reduction via local tangent space alignment". SIAM Journal on Scientific Computing. 26 (1): 313–338. CiteSeerX 10.1.1.211.9957. doi:10.1137/s1064827502419154.
  13. ^ Zhang, Zhenyue; Wang, Jing (2006). "MLLE: Modified locally linear embedding using multiple weights". In Sch?lkopf, B.; Platt, J.; Hoffman, T. (eds.). Advances in Neural Information Processing Systems. NIPS 2006. NeurIPS Proceedings. Vol. 19. pp. 1593–1600. ISBN 9781622760381. It can retrieve the ideal embedding if MLLE is applied on data points sampled from an isometric manifold.

Bibliography

[edit]
五音是什么 胡麻是什么植物 眼睛疼滴什么眼药水 基佬是什么意思 姻缘是什么意思
甲亢都有什么症状 但求无愧于心上句是什么 吃榴莲有什么好处和坏处 胆汁反流是什么意思 天梭手表属于什么档次
内心os什么意思 南昌有什么好吃的 什么人不适合普拉提 手心发烫是什么原因 焖子是什么做的
海蜇长什么样 出国用什么翻译软件好 高锰酸钾治疗男性什么病 喉咙肿痛吃什么药好 什么体质人容易长脚气
polo是什么意思hcv9jop1ns0r.cn 什么病不能熬夜hcv9jop0ns3r.cn 寅时是什么时间hcv8jop9ns5r.cn 睾丸是什么形状的hebeidezhi.com 什么时候能测出怀孕hcv9jop6ns4r.cn
什么东西越生气越大hcv7jop6ns7r.cn 经常打飞机有什么危害hcv8jop8ns2r.cn 木梳子梳头有什么好处baiqunet.com 窦性心律逆钟向转位是什么意思0297y7.com 安全感是什么意思hcv9jop8ns1r.cn
肩袖损伤用什么药hcv9jop5ns4r.cn 不想吃饭吃什么药hcv9jop6ns1r.cn 右手无名指戴戒指代表什么hcv9jop5ns1r.cn 贞操是什么hcv9jop6ns8r.cn 健脾祛湿吃什么药hcv7jop6ns9r.cn
为什么医院不推荐钡餐检查yanzhenzixun.com 尿泡沫多吃什么药hcv8jop6ns0r.cn 耳朵内痒是什么原因hcv9jop3ns0r.cn ryan是什么意思xinjiangjialails.com 那天午后我站在你家门口什么歌gangsutong.com
百度