外阴炎吃什么药| 澳大利亚属于什么国家| 牛奶洗脸有什么好处| 脱发用什么药最好| 甲肝阳性是什么意思| 墨子是什么家| rolex是什么牌子的手表| 女人吃人参有什么好处| 盐吃多了有什么危害| 一什么颜色| 什么是韧带| 老是打喷嚏是什么原因| 九斗一簸箕有什么说法| 指甲黑线是什么原因| 脑血栓不能吃什么水果| 胰腺炎的症状是什么| 桂圆和龙眼有什么区别| 怂人是什么意思| 小腿出汗是什么原因| 来年是什么意思| holly是什么意思| 毫不逊色的意思是什么| 宫颈转化区三型是什么意思| 身上到处痒是什么原因| 多巴胺什么意思| 右肺纤维灶是什么意思| 世界上最大的湖泊是什么湖| 鸡犬不宁是什么意思| 挂科是什么意思| 4.11是什么星座| 右胳膊麻木是什么征兆| 天指什么生肖| 淤青擦什么药| 消融手术是什么意思| 眉心跳动代表什么预兆| 什么是介质| 迎风流泪用什么眼药水| 怀孕吃什么水果好| 酒吧营销是做什么的| 缺磷吃什么食物好| 宫颈机能不全是什么意思| 笑话是什么意思| 金箔金命是什么意思| 红牛加什么提高性功能| 八九不离十是什么意思| 古尔邦节什么意思| btob是什么意思| 谷草转氨酶是什么意思| 戒烟有什么方法| 什么食物养胃又治胃病| 糖醋里脊是什么肉做的| 阴道口瘙痒是什么原因| 梦见被熊追是什么意思| xo兑什么饮料好喝| tvt是什么意思| 夏天吃什么| 胆碱酯酶高是什么意思| 伤食是什么意思| 痛经是什么感觉| 乙肝两对半阴性是什么意思| 19朵玫瑰代表什么意思| 妈妈a型爸爸b型孩子是什么血型| 梦见自己得了绝症预示着什么| 子宫肌瘤是什么意思| 抑郁症的表现是什么| 黄斑前膜是什么病| 皇太后是皇上的什么人| 十一月二十二是什么星座| 泳字五行属什么| 傲娇什么意思| 趾高气昂是什么意思| 伊朗用什么语言| 宫颈短是什么意思| 五马长枪是什么意思| 豆包是什么| 伤口感染吃什么消炎药| 人为什么会中暑| 什么细节能感动摩羯男| 田七配什么煲汤最好| 女生下面长什么样| 傻瓜是什么意思| 小孩子发烧手脚冰凉是什么原因| 卵巢囊肿是什么意思| 什么人| 婴儿大便绿色是什么原因| 吃什么食物快速降糖| 颈椎反曲是什么意思| 什么叫散瞳| 1974年属什么| 月经两个月没来是什么原因| 姗字五行属什么| 为什么拉的屎是墨绿色| 儿童风热感冒吃什么药| 可遇不可求是什么意思| 低钾血症是什么意思| 松茸是什么东西| 吃什么能快速减肥| 10月1日是什么日子| 卖萌什么意思| 古早是什么意思| 才高八斗是什么动物| 11月22是什么星座| 身上长红痘痘是什么原因| 越位是什么意思| 黄瓜是绿色的为什么叫黄瓜| 什么是动脉硬化| 蟊贼是什么意思| 微恶风寒是什么意思| 3月6日是什么星座| 荔枝补什么| 中单是什么| 李耳为什么叫老子| 肉桂跟桂皮有什么区别| 酒干倘卖无什么意思| 胃热是什么原因引起的| 吉祥是什么意思| 放我鸽子是什么意思| 关节退行性改变是什么意思| superstar什么意思| 吃什么东西补充胶原蛋白| 侍郎是什么官| 属蛇与什么属相相克| 氟苯尼考兽药治什么病| 血小板减少是什么病| 副师级是什么军衔| 女人盗汗吃什么好得快| 饿了手抖是什么原因| 虎皮膏药有什么功效| 湖南湖北以什么湖为界| 褪黑素有什么作用| 2月25日什么星座| 诗韵是什么意思| 女性支原体阳性是什么意思| 绿色食品指什么食品| 头发斑秃是什么原因引起的| 流年什么意思| 肝左叶囊肿是什么意思| 太阳鱼吃什么食物| 脂蛋白a高是什么意思| zara属于什么档次| 山莨菪碱为什么叫6542| 铁皮石斛能治什么病| 子痫是什么意思| 牙齿为什么发黄| 龙和什么属相最配| 鸡配什么生肖最好| 考试前吃巧克力有什么好处| 胸疼什么原因| 胸闷出汗是什么原因| 倒车雷达什么牌子好| rosa是什么意思| 睡眠障碍挂什么科| 身主天机是什么意思| 酒精胶是粘什么的| 什么眉什么目| 高山茶属于什么茶| 梦见手机丢了又找到了是什么意思| 繁花似锦什么意思| 什么食物对肝有好处| 弱视是什么| 唇周围长痘痘是什么原因| 周瑜是什么生肖| 色泽是什么意思| 为什么会长粉刺| 花胶有什么功效与作用| 文房四宝指什么| 全身spa是什么意思| 康复治疗学主要学什么| 突然晕厥是什么原因| 斯沃琪手表什么档次| 什么人不能吃海参| 爿是什么意思| 梦见大火烧山是什么意思| 氨水是什么东西| 皮皮虾吃什么| 为什么医生说直肠炎不用吃药| 布谷鸟叫有什么征兆| 耳机降噪是什么意思| 肝区疼痛吃什么药| 东山再起是什么意思| 肝s4钙化灶是什么意思| afp是什么| 肾结石看病挂什么科室| 孕妇前三个月吃什么对胎儿好| 杏花是什么季节开的| 268是什么意思| 一月是什么月| 子宫脱垂有什么症状| 淋巴细胞百分比低说明什么问题| 拔牙后可以吃什么| dym是什么意思| 瞽叟是什么意思| 怀孕一个月有什么症状| 什么的围巾| 声色什么| 梦见自己丢钱了什么征兆| iic是什么意思| 没有润滑剂可以用什么代替| 汉武帝叫什么| 心衰吃什么药好| 爱因斯坦是什么学家| 河豚有毒为什么还吃| 木星是什么颜色| 什么贝壳| 两袖清风是什么生肖| 医保和农村合作医疗有什么区别| 消化快容易饿什么原因| 鸡块炖什么好吃| 六月生日是什么星座| 乌托邦什么意思| 木薯粉是什么粉| 右下腹是什么器官| bobby什么意思| 浸洗是什么意思| 笑气是什么气体| 10月15日是什么星座| 藏干是什么意思| 院长是什么级别| 中国最长的河是什么河| 姚明什么时候退役的| 孕妇可以吃什么感冒药| 低血压有什么症状| 高危型hpv52阳性是什么意思| 茬是什么意思| 脚真菌感染用什么药最好| 麦高芬是什么意思| 十二月九号是什么星座| 宸是什么意思| 火龙果什么时候吃最好| 眉头有痣代表什么| 切除扁桃体有什么好处和坏处| 心病是什么病有哪些症状| 什么是交感神经紊乱| 感冒吃什么| 咳嗽能吃什么水果| dm医学上是什么意思| 头出汗是什么原因| 包皮嵌顿是什么| 舌头发麻是什么原因引起的| 大v什么意思| 字读什么| 视力s和c代表什么| 梦到涨大水预示着什么| 梦到妈妈怀孕什么预兆| 腊月二十三是什么星座| 感冒咳嗽吃什么药好| 防中暑喝什么水| 韬略是什么意思| 甲功五项是什么意思| 急性牙髓炎吃什么药| 迪拜货币叫什么| hkc是什么牌子| 尿发黄什么原因| 心梗挂什么科| 化疗和放疗有什么区别| e是什么牌子| 狗狗皮肤病用什么药| 什么叫品牌| 夜未央什么意思| 郭字五行属什么| 脾阳虚吃什么中成药| 解酒的酶是什么酶| 属牛男最在乎女人什么| 胃出血恢复期吃什么好| 百度Jump to content

《马里奥.巴尔加斯.略萨:他的文学人生》出版

From Wikipedia, the free encyclopedia
An image of a fern-like fractal (Barnsley's fern) that exhibits affine self-similarity. Each of the leaves of the fern is related to each other leaf by an affine transformation. For instance, the red leaf can be transformed into both the dark blue leaf and any of the light blue leaves by a combination of reflection, rotation, scaling, and translation.
百度 只要我们精诚合作,持续加强核安全,核能造福人类的前景必将更加光明。

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line.

If X is the point set of an affine space, then every affine transformation on X can be represented as the composition of a linear transformation on X and a translation of X. Unlike a purely linear transformation, an affine transformation need not preserve the origin of the affine space. Thus, every linear transformation is affine, but not every affine transformation is linear.

Examples of affine transformations include translation, scaling, homothety, similarity, reflection, rotation, hyperbolic rotation, shear mapping, and compositions of them in any combination and sequence.

Viewing an affine space as the complement of a hyperplane at infinity of a projective space, the affine transformations are the projective transformations of that projective space that leave the hyperplane at infinity invariant, restricted to the complement of that hyperplane.

A generalization of an affine transformation is an affine map[1] (or affine homomorphism or affine mapping) between two (potentially different) affine spaces over the same field k. Let (X, V, k) and (Z, W, k) be two affine spaces with X and Z the point sets and V and W the respective associated vector spaces over the field k. A map f : XZ is an affine map if there exists a linear map mf : VW such that mf (x ? y) = f (x) ? f (y) for all x, y in X.[2]

Definition

[edit]

Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that implies that

If the dimension of X is at least two, a semiaffine transformation f of X is a bijection from X onto itself satisfying:[3]

  1. For every d-dimensional affine subspace S of X, then f (S) is also a d-dimensional affine subspace of X.
  2. If S and T are parallel affine subspaces of X, then f (S) and f (T) are parallel.

These two conditions are satisfied by affine transformations, and express what is precisely meant by the expression that "f preserves parallelism".

These conditions are not independent as the second follows from the first.[4] Furthermore, if the field k has at least three elements, the first condition can be simplified to: f is a collineation, that is, it maps lines to lines.[5]

Structure

[edit]

By the definition of an affine space, V acts on X, so that, for every pair in X × V there is associated a point y in X. We can denote this action by . Here we use the convention that are two interchangeable notations for an element of V. By fixing a point c in X one can define a function mc : XV by mc(x) = cx. For any c, this function is one-to-one, and so, has an inverse function mc?1 : VX given by . These functions can be used to turn X into a vector space (with respect to the point c) by defining:[6]

  • and

This vector space has origin c and formally needs to be distinguished from the affine space X, but common practice is to denote it by the same symbol and mention that it is a vector space after an origin has been specified. This identification permits points to be viewed as vectors and vice versa.

For any linear transformation λ of V, we can define the function L(c, λ) : XX by

Then L(c, λ) is an affine transformation of X which leaves the point c fixed.[7] It is a linear transformation of X, viewed as a vector space with origin c.

Let σ be any affine transformation of X. Pick a point c in X and consider the translation of X by the vector , denoted by Tw. Translations are affine transformations and the composition of affine transformations is an affine transformation. For this choice of c, there exists a unique linear transformation λ of V such that[8]

That is, an arbitrary affine transformation of X is the composition of a linear transformation of X (viewed as a vector space) and a translation of X.

This representation of affine transformations is often taken as the definition of an affine transformation (with the choice of origin being implicit).[9][10][11]

Representation

[edit]

As shown above, an affine map is the composition of two functions: a translation and a linear map. Ordinary vector algebra uses matrix multiplication to represent linear maps, and vector addition to represent translations. Formally, in the finite-dimensional case, if the linear map is represented as a multiplication by an invertible matrix and the translation as the addition of a vector , an affine map acting on a vector can be represented as

Augmented matrix

[edit]
Affine transformations on the 2D plane can be performed by linear transformations in three dimensions. Translation is done by shearing along over the z axis, and rotation is performed around the z axis.

Using an augmented matrix and an augmented vector, it is possible to represent both the translation and the linear map using a single matrix multiplication. The technique requires that all vectors be augmented with a "1" at the end, and all matrices be augmented with an extra row of zeros at the bottom, an extra column—the translation vector—to the right, and a "1" in the lower right corner. If is a matrix,

is equivalent to the following

The above-mentioned augmented matrix is called an affine transformation matrix. In the general case, when the last row vector is not restricted to be , the matrix becomes a projective transformation matrix (as it can also be used to perform projective transformations).

This representation exhibits the set of all invertible affine transformations as the semidirect product of and . This is a group under the operation of composition of functions, called the affine group.

Ordinary matrix-vector multiplication always maps the origin to the origin, and could therefore never represent a translation, in which the origin must necessarily be mapped to some other point. By appending the additional coordinate "1" to every vector, one essentially considers the space to be mapped as a subset of a space with an additional dimension. In that space, the original space occupies the subset in which the additional coordinate is 1. Thus the origin of the original space can be found at . A translation within the original space by means of a linear transformation of the higher-dimensional space is then possible (specifically, a shear transformation). The coordinates in the higher-dimensional space are an example of homogeneous coordinates. If the original space is Euclidean, the higher dimensional space is a real projective space.

The advantage of using homogeneous coordinates is that one can combine any number of affine transformations into one by multiplying the respective matrices. This property is used extensively in computer graphics, computer vision and robotics.

Example augmented matrix

[edit]

Suppose you have three points that define a non-degenerate triangle in a plane, or four points that define a non-degenerate tetrahedron in 3-dimensional space, or generally n + 1 points x1, ..., xn+1 that define a non-degenerate simplex in n-dimensional space. Suppose you have corresponding destination points y1, ..., yn+1, where these new points can lie in a space with any number of dimensions. (Furthermore, the new points need not be distinct from each other and need not form a non-degenerate simplex.) The unique augmented matrix M that achieves the affine transformation for every i is

Properties

[edit]
The one-parameter group of squeeze mappings preserves areas, here illustrated with hyperbolic sectors.

Properties preserved

[edit]

An affine transformation preserves:

  1. collinearity between points: three or more points which lie on the same line (called collinear points) continue to be collinear after the transformation.
  2. parallelism: two or more lines which are parallel, continue to be parallel after the transformation.
  3. convexity of sets: a convex set continues to be convex after the transformation. Moreover, the extreme points of the original set are mapped to the extreme points of the transformed set.[12]
  4. ratios of lengths of parallel line segments: for distinct parallel segments defined by points and , and , the ratio of and is the same as that of and .
  5. barycenters of weighted collections of points.

Groups

[edit]

As an affine transformation is invertible, the square matrix appearing in its matrix representation is invertible. The matrix representation of the inverse transformation is thus

The invertible affine transformations (of an affine space onto itself) form the affine group, which has the general linear group of degree as subgroup and is itself a subgroup of the general linear group of degree .

The similarity transformations form the subgroup where is a scalar times an orthogonal matrix. For example, if the affine transformation acts on the plane and if the determinant of is 1 or ?1 then the transformation is an equiareal mapping. Such transformations form a subgroup called the equi-affine group.[13] A transformation that is both equi-affine and a similarity is an isometry of the plane taken with Euclidean distance.

Each of these groups has a subgroup of orientation-preserving or positive affine transformations: those where the determinant of is positive. In the last case this is in 3D the group of rigid transformations (proper rotations and pure translations).

If there is a fixed point, we can take that as the origin, and the affine transformation reduces to a linear transformation. This may make it easier to classify and understand the transformation. For example, describing a transformation as a rotation by a certain angle with respect to a certain axis may give a clearer idea of the overall behavior of the transformation than describing it as a combination of a translation and a rotation. However, this depends on application and context.

Affine maps

[edit]

An affine map between two affine spaces is a map on the points that acts linearly on the vectors (that is, the vectors between points of the space). In symbols, determines a linear transformation such that, for any pair of points :

or

.

We can interpret this definition in a few other ways, as follows.

If an origin is chosen, and denotes its image , then this means that for any vector :

.

If an origin is also chosen, this can be decomposed as an affine transformation that sends , namely

,

followed by the translation by a vector .

The conclusion is that, intuitively, consists of a translation and a linear map.

Alternative definition

[edit]

Given two affine spaces and , over the same field, a function is an affine map if and only if for every family of weighted points in such that

,

we have[14]

.

In other words, preserves barycenters.

History

[edit]

The word "affine" as a mathematical term is defined in connection with tangents to curves in Euler's 1748 Introductio in analysin infinitorum.[15] Felix Klein attributes the term "affine transformation" to M?bius and Gauss.[10]

Image transformation

[edit]

In their applications to digital image processing, the affine transformations are analogous to printing on a sheet of rubber and stretching the sheet's edges parallel to the plane. This transform relocates pixels requiring intensity interpolation to approximate the value of moved pixels, bicubic interpolation is the standard for image transformations in image processing applications. Affine transformations scale, rotate, translate, mirror and shear images as shown in the following examples:[16]

Transformation name Affine matrix Example
Identity (transform to original image)
Translation
Reflection
Scale
Rotate
where θ = ?π/6? =30°
Shear

The affine transforms are applicable to the registration process where two or more images are aligned (registered). An example of image registration is the generation of panoramic images that are the product of multiple images stitched together.

Affine warping

[edit]

The affine transform preserves parallel lines. However, the stretching and shearing transformations warp shapes, as the following example shows:

This is an example of image warping. However, the affine transformations do not facilitate projection onto a curved surface or radial distortions.

In the plane

[edit]
A homothety. The triangles A1B1Z, B1C1Z, and A1C1Z get mapped to A2B2Z, B2C2Z, and A2C2Z, respectively.

Every affine transformations in a Euclidean plane is the composition of a translation and an affine transformation that fixes a point; the latter may be

Given two non-degenerate triangles ABC and A′B′C′ in a Euclidean plane, there is a unique affine transformation T that maps A to A′, B to B′ and C to C′. Each of ABC and A′B′C′ defines an affine coordinate system and a barycentric coordinate system. Given a point P, the point T(P) is the point that has the same coordinates on the second system as the coordinates of P on the first system.

Affine transformations do not respect lengths or angles; they multiply areas by the constant factor

area of A′B′C′ / area of ABC.

A given T may either be direct (respect orientation), or indirect (reverse orientation), and this may be determined by comparing the orientations of the triangles.

Examples

[edit]

Over the real numbers

[edit]

The functions with and in and , are precisely the affine transformations of the real line.

In plane geometry

[edit]
A simple affine transformation on the real plane
Effect of applying various 2D affine transformation matrices on a unit square. Note that the reflection matrices are special cases of the scaling matrix.

In , the transformation shown at left is accomplished using the map given by:

Transforming the three corner points of the original triangle (in red) gives three new points which form the new triangle (in blue). This transformation skews and translates the original triangle.

In fact, all triangles are related to one another by affine transformations. This is also true for all parallelograms, but not for all quadrilaterals.

See also

[edit]

Notes

[edit]
  1. ^ Berger 1987, p. 38.
  2. ^ Samuel 1988, p. 11.
  3. ^ Snapper & Troyer 1989, p. 65.
  4. ^ Snapper & Troyer 1989, p. 66.
  5. ^ Snapper & Troyer 1989, p. 69.
  6. ^ Snapper & Troyer 1989, p. 59.
  7. ^ Snapper & Troyer 1989, p. 76,87.
  8. ^ Snapper & Troyer 1989, p. 86.
  9. ^ Wan 1993, pp. 19–20.
  10. ^ a b Klein 1948, p. 70.
  11. ^ Brannan, Esplen & Gray 1999, p. 53.
  12. ^ Reinhard Schultz. "Affine transformations and convexity" (PDF). Retrieved 27 February 2017.
  13. ^ Oswald Veblen (1918) Projective Geometry, volume 2, pp. 105–7.
  14. ^ Schneider, Philip K.; Eberly, David H. (2003). Geometric Tools for Computer Graphics. Morgan Kaufmann. p. 98. ISBN 978-1-55860-594-7.
  15. ^ Euler, Leonhard (1748). Introductio in analysin infinitorum (in Latin). Vol. II. Book II, sect. XVIII, art. 442
  16. ^ Gonzalez, Rafael (2008). 'Digital Image Processing, 3rd'. Pearson Hall. ISBN 9780131687288.

References

[edit]
[edit]
权威是什么意思 偏头痛吃什么药最好 cartier什么牌子 yy是什么意思 庚金是什么意思
四月十八是什么星座 治疗阳痿早泄什么药最好 年柱将星是什么意思 津液是什么意思 遗精是什么意思啊
女人什么发型最有气质 办幼儿园需要什么证 口臭胃火大吃什么药好 一本线是什么意思 尖锐湿疣什么症状
生日送什么花合适 胃火旺吃什么 什么是符号 二月是什么星座 吃黑豆有什么好处
牙龈长泡是什么原因cj623037.com flair是什么意思hcv8jop9ns8r.cn 鼠疮是什么病cj623037.com 3月份是什么星座hcv7jop9ns1r.cn 色氨酸是什么hcv9jop6ns5r.cn
颞下颌关节紊乱吃什么药qingzhougame.com 牙齿有黑洞是什么原因hcv8jop3ns2r.cn 品牌背书是什么意思hcv9jop3ns1r.cn 上火为什么会牙疼hcv8jop0ns6r.cn 梦见父亲去世预示什么hcv8jop5ns0r.cn
小学生什么时候开学hebeidezhi.com 深蓝色是什么颜色hcv7jop9ns5r.cn 尿隐血阳性是什么病hcv8jop6ns6r.cn 月经量多是什么原因hcv8jop3ns7r.cn 老鼠长什么样520myf.com
hpm是什么意思hcv9jop1ns7r.cn 精子发黄是什么原因hcv8jop3ns6r.cn 为什么会脑梗hcv8jop1ns8r.cn kda什么意思hcv8jop7ns4r.cn 车水马龙是什么生肖hcv9jop1ns5r.cn
百度